4.5 Article

Plane kinematic calibration method for industrial robot based on dynamic measurement of double ball bar

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.precisioneng.2019.12.010

Keywords

Dynamic measurement; DBB; Sub-plane; Industrial robot; Roundness error; Laser interferometer

Funding

  1. National Natural Science Foundation of China [51975497]
  2. Natural Science Foundation of Fujian Province, China [2016J01258]

Ask authors/readers for more resources

A new calibration method is proposed to improve the circular plane kinematic accuracy of industrial robot by using dynamic measurement of double ball bar (DBB). The kinematic model of robot is established by the MDH (Modified Denavit-Hartenberg) method. The error mapping relationship between the motion error of end-effector and the kinematic parameter error of each axis is calculated through the Jacobian iterative method. In order to identify the validity of the MDH parameter errors, distance errors and angle errors of each joint axis were simulated by three orders of magnitude respectively. After multiple iterations, the average value of kinematic error modulus of end-effector was reduced to nanometer range. Experiments were conducted on an industrial robot (EPSON C4 A901) in the working space of 180 mm x 490 mm. Due to the measuring radius of DBB, the working space was divided into 30 sub-planes to measure the roundness error before and after compensation. The average roundness error calibrated by the proposed method at multi-planes decreased about 21.4%, from 0.4637 mm to 0.3644 mm, while the standard deviation of roundness error was reduced from 0.0720 mm to 0.0656 mm. In addition, by comparing the results of positioning error measured by the laser interferometer before and after calibration, the range values of motion errors of end-effector were decreasing by 0.1033 mm and 0.0730 mm on the X and Y axes, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Engineering, Multidisciplinary

Monitoring method of cutting forces and vibrations by using frequency separation of acceleration sensor signals during milling process with small ball end mills

Junichi Kouguchi, Hayato Yoshioka

Summary: A new monitoring method for milling process using signal analysis of acceleration sensors is proposed in this research, which can solve the difficulty in estimating cutting forces for small diameter tools.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Investigation of cutting depth and contact area in nanoindenter scratching

Weijie Wang, Yanling Tian, Zhao Zhang, Zhilai Lu, Fujun Wang, Dawei Zhang

Summary: This paper proposes a comprehensive model for predicting the cutting depth and contact area in nanoscratching. The model takes into account the geometric shape of the indenter and elastic recovery, reducing prediction errors. The study also analyzes the influence of the indenter geometry on the contact area, with the face angle of the pyramid identified as a key factor.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

High-accuracy roundness measurement of small cylindrical workpieces by a high-frequency filtering method

Qiaolin Li, Yuki Shimizu, Xiaohao Wang, Xinghui Li, Wei Gao

Summary: This paper introduces a stitching linear scan method for roundness and diameter measurement of small cylinders, using a ruby ball stylus as hardware filtering to eliminate the influence of high-frequency data. Experimental results show that the repeatability of the ruby ball stylus is better than the diamond stylus.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

A calibration method of CMOS-based autocollimator using reflected diffraction pattern of strip reflector

Chaturaporn Kerdkaew, Surasak Kaewpho, Sakchai Chomkokard, Theera Yaemglin, Ittipon Cheowanish, Noparit Jinuntuya, Wiwat Wongkokua

Summary: A new calibration standard for a CMOS-based autocollimator using an optical angle generator with a submillimeter strip reflector (OAG-SSR) is proposed. This method provides angular values along the measuring range of the autocollimator without any mechanical movement, enabling a faster calibration process, which is suitable for integration with production lines.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

An approach for optimal tolerance allocation of five-axis machine tools by simultaneously considering volumetric error and processing simplicity index

Haohao Tao, Tongjie Li, Feng Chen, Jinwei Fan, Ri Pan

Summary: In this paper, a novel OTA method is proposed that considers the relationship between tolerance of machine tools' key parts and volumetric error. A volumetric error prediction model is established based on the bridge between geometric error and tolerance. Additionally, a Processing Simplicity Index (PSI) is introduced to replace manufacturing cost and a tolerance-PSI model is established. An OTA model is formulated to minimize volumetric error and maximize PSI. The feasibility and effectiveness of the method are validated through simulations and experiments.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Effects of curing, temperature, pressure, and moisture on the surface-figure of a high-precision bonded mirror

Xiumin Zhang, Jianhua Liu, Huanxiong Xia, Xiaohui Ao, Jiechen Zhou, Zhihao Fu

Summary: A comprehensive finite-element model was developed in this paper to study the evolution of surface figure in high-precision bonded mirrors. The cure kinetics and mechanical behaviors of the optical adhesive were experimentally examined and modeled, and the effects of environmental factors on the surface-figure accuracy and stability were further investigated.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Novel aerostatic bearings with hermetically squeeze film dampers for the improvement of stability: Theoretical and experimental investigations

Peng Wang, Bin Chen, Jian Li, Jianwei Wang, Yingjie Zhang, Kai Feng

Summary: This paper proposes an aerostatic bearing with damper modules to suppress vibration on the bearing surface. The stiffness and damping characteristics can be adjusted by changing the thickness of the sheets, resulting in effective vibration suppression.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Effect of pad surface morphology on the surface shape of the lapped workpiece

Lei Yang, Xiaoguang Guo, Renke Kang, Xianglong Zhu, Yufan Jia, Hao Wang

Summary: This paper develops an analytical model that takes into account the pad surface morphology to predict the evolution of the workpiece surface shape. The model considers the cross-scale relationship between the formation of lapped surface shape and the scratching process of a single abrasive grain. The simulated and experimental results validate the correctness and validity of the model, providing new ideas for controlling the workpiece surface.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Investigation of dimensional and geometrical tolerances of laser powder directed energy deposition process

Gabriele Piscopo, Alessandro Salmi, Eleonora Atzeni

Summary: This paper proposes an artifact for the LP-DED process and evaluates its dimensional accuracy and geometrical tolerances. The findings show that the tolerances of the LP-DED process are comparable to sand casting, lower than LB-PBF technologies, but similar to EB-PBF technologies.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Macro-electrolyte jet machining of TC4 titanium alloy using a rear-end tilt tool

Liang Xue, Ningsong Qu

Summary: This study focuses on the key issues of improving material removal rate and surface quality in macro-electrolyte jet machining. By introducing a novel tool with the rear-end tilted, the current density of the workpiece surface can be increased, leading to improved machining performance. Experimental results show that the tool with a rear-end tilt angle of 15 degrees significantly enhances the material removal rate and reduces surface roughness compared to the standard tool.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

A calibration method for spatial error of industrial robot under variable load conditions based on double-ball rotary structure and three contact displacement sensors

Ping Yang, Kaixin Luo, Runxi Wu

Summary: This article proposes a new calibration device to measure the spatial errors of a six-axis serial robot. The device compensates for errors by modifying angles and identifying stiffness parameters, and experiments verify its effectiveness.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Electro-mechanical transfer matrix modeling of piezoelectric actuators and application for elliptical flexure amplifiers

Shilei Wu, Mingxiang Ling, Yingbin Wang, Tao Huang

Summary: This paper studies the electromechanical behavior of elliptical APAs by analyzing the multi-domain dynamics of piezoelectric stacks and compliant mechanisms using a novel electro-mechanical transfer matrix method. An analytical electro-elasto transfer matrix of piezoelectric stacks operating at the d33 mode is derived in the form of Taylor's series. The dynamic response spectrum of displacement and impedance for elliptical APAs is accurately captured by this electro-mechanical model, and different topologies of elliptical APAs are compared to suggest the optimal configuration.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Stable nanodepth and nanogram level material removal in electrochemically induced chemical etching of fused quartz

Lei Meng, Yusheng Liu, Ying Yan, Dongming Guo, Ping Zhou

Summary: This study explores electrochemically induced chemical etching (ECICE) as a method to achieve nanogram-level, low-cost, stress-free, and stable material removal of fused quartz. The key factors affecting removal minimum and stability are revealed through modeling analysis and testing. A proposed method achieves precision stable removal with satisfactory results at the nanogram level.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Development, modeling, and control of a syringe-based picoliter-scale microinjection system

Hong Yao, Hai Bi, Junjie Wei, Shuo Zhan, Fangxin Chen, IEEE

Summary: This paper presents a dual-loop control syringe-based picoliter-scale injection system for high-precision microinjection. The system utilizes an inner pneumatic servo loop and an outer position servo loop to achieve precise control. The experimental results demonstrate that the system can regulate the smallest droplet size to within 0.25 pL.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)

Article Engineering, Multidisciplinary

Modified modeling and internal model control method of thrust ripples in PMLSMs for ultraprecision air-bearing linear feed systems

Jinchun Yuan, Jiasheng Li, Ye Ding

Summary: In this paper, a simple and effective internal model control (IMC) system is proposed to attenuate thrust ripples in ultraprecision air-bearing linear feed systems, based on a modified modeling and identification method of permanent magnet linear synchronous motors (PMLSMs). The performance of the proposed method in overcoming nonlinearity and achieving smooth velocities in steady states is demonstrated through analysis and experiments.

PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY (2024)