4.8 Article

Producing high-quality solar resource maps by integrating high- and low-accuracy measurements using Gaussian processes

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 113, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2019.109260

Keywords

Gaussian process; Data fusion; Solar resource; Kriging; Mapping

Ask authors/readers for more resources

With the objective of producing high-resolution and high-accuracy maps of mean annual irradiance at country scale, this contribution exploits the complementary properties of two distinct sources of solar irradiance data: gridded modeled data derived from satellite observations, and station-specific typical meteorological year (TMY) data. A data fusion procedure based on Gaussian process modeling is used to optimally combine the two sources of data and derive solar resource maps. Gridded physical solar model version 3 (PSM3) satellite-derived data at 4-km resolution and TMY3 data from 67 stations in California are used to produce a map of mean annual global horizontal irradiance at 2-km resolution and exemplify the procedure. It is shown that by integrating the PSM3 data with TMY3 data, the original 5.2% mean error in the PSM3 map is reduced to 1.6%. The demonstrated approach is suitable for a variety of regional-scale applications for which both high-resolution data of low accuracy and low-resolution measurements of high accuracy are available.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available