4.6 Article

Impact of Site-Specific Bioconjugation on the Interfacial Activity of a Protein Biosurfactant

Journal

LANGMUIR
Volume 35, Issue 42, Pages 13588-13594

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b01684

Keywords

-

Funding

  1. University of Queensland ECR grant
  2. King Abdul-Aziz University, Ministry of Higher education, Saudi Arabia
  3. QLD node of the National Biologics Facility, an initiative of the Australian Government as part of the NCRIS National Research Infrastructure for Australia

Ask authors/readers for more resources

Biosurfactants are surface active molecules that can be produced by renewable, industrially scalable biologic processes. DAMP4, a designer biosurfactant, enables the modification of interfaces via genetic or chemical fusion to functional moieties. However, bioconjugation of addressable amines introduces heterogeneity that limits the precision of functionalization as well as the resolution of interfacial characterization. Here, we designed DAMP4 variants with cysteine point mutations to allow for site-specific bioconjugation. The DAMP4 variants were shown to retain the structural stability and interfacial activity characteristic of the parent molecule, while permitting efficient and specific conjugation of polyethylene glycol (PEG). PEGylation results in a considerable reduction on the interfacial activity of both single and double mutants. Comparison of conjugates with one or two conjugation sites shows that both the number of conjugates as well as the mass of conjugated material impact the interfacial activity of DAMP4. As a result, the ability of DAMP4 variants with multiple PEG conjugates to impart colloidal stability on peptide-stabilized emulsions is reduced. We suggest that this is due to steric constraints on the structures of amphiphilic helices at the interface. Specific and efficient bioconjugation permits the exploration and investigation of the interfacial properties of designer protein biosurfactants with molecular precision. Our findings should therefore inform the design and modification of biosurfactants for their increasing use in industrial processes and nutritional and pharmaceutical formulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available