4.8 Article

Highly stretchable and sensitive conductive rubber composites with tunable piezoresistivity for motion detection and flexible electrodes

Journal

CARBON
Volume 158, Issue -, Pages 893-903

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2019.11.079

Keywords

-

Funding

  1. National Natural Science Foundation of China [11872228]

Ask authors/readers for more resources

Highly stretchable conductive polymer composites and highly sensitive flexible strain sensors have broad application prospects for wearable electronic devices such as human motion monitoring. In this paper, excellent stretchable and high conductive rubber composites based on room temperature vulcanized (RTV) silicone rubber with carbon fiber (CF) and carbon black (CB) are prepared through the solution method and the ultrasonic dispersion technology. The morphology results show that CF and CB in the composites formed a 3D collaborative conductive network of bridge connection. Then, both the sensitive characteristic and strain-sensing mechanism of CF/CB-RTV silicone rubber sensors have been investigated, which exhibits excellent stretchability as high as 700% and has a good linear relationship with 0-375% strain range and the maximum gauge factor of 182. Also, it has been found that the composites with 12.5 wt% CB maintained good electrical conductivity in the case of large deformation. Finally, CF/CB-RTV conductive composites have been used for human motion monitoring with high sensitivity, and as flexible electrodes in LED bulbs, which still have significant brightness under the 300% strain of the composites with 12.5 wt% CB. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available