4.6 Article

Radical-Triggered Chemiluminescence of Phenanthroline Derivatives: An Insight into Radical-Aromatic Interaction

Journal

ACS OMEGA
Volume 4, Issue 12, Pages 15004-15011

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b01785

Keywords

-

Funding

  1. National Natural Science Foundation of China [21727814, 21435002, 21621003]
  2. China Postdoctoral Science Foundation

Ask authors/readers for more resources

The hitherto unknown influence of 1,10-phenonthroline (1,10-phen) and its derivatives on the weak chemiluminescence (CL) of periodate-peroxide has been investigated, and a novel method for CL catalysis is described. Herein, we have deconvoluted the variation in CL intensity arising from the addition of various derivatives of 1,10-phen. Interestingly, similar derivatives of 1,10-phen show interesting differences in their reactivity toward CL. Electron-withdrawing substituents on 1,10-phen boosted the CL signals, indicating a negative charge buildup on 1,10-phen in the rate-determining step. The 1,10-phen derivatives having substitution at the C-5=C-6 position resulted in no CL signals due to the blockage of the reactive site. Mechanistic investigations are interpreted in terms of free radical (H2O2 reaction), followed by the oxygen atom transfer via an electrophilic attack of IO4- (IO4- reaction) on 1,10-phen resulting in dioxetane with enhanced CL emission. Additionally, the relationship between electronic structures and photophysical properties was investigated using density functional theory. Our results are expected to open up promising application of 1,10-phen as a molecular catalyst, providing a new strategy for metal-free catalytic CL enhancement reaction. We believe that this would foster in gleaning more detailed information on the nature of these reactions, thereby leading to a deeper understanding of the CL mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available