4.5 Article

New Non-Bilaterian Transcriptomes Provide Novel Insights into the Evolution of Coral Skeletomes

Journal

GENOME BIOLOGY AND EVOLUTION
Volume 11, Issue 11, Pages 3068-3081

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evz199

Keywords

coral calcification; biomineralization; Octocorallia; galaxin; molecular evolution; Scleractinia

Funding

  1. German Research Foundation (DFG) [Wo896/18-1 MINORCA]
  2. LMU Munich's Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative
  3. European Union [764840]
  4. Marie Curie Actions (MSCA) [764840] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

A general trend observed in animal skeletomes-the proteins occluded in animal skeletons-is the copresence of taxonomically widespread and lineage-specific proteins that actively regulate the biomineralization process. Among cnidarians, the skeletomes of scleractinian corals have been shown to follow this trend. However, distributions and phylogenetic analyses of biomineralization related genes are often based on only a few species, with other anthozoan calcifiers such as octocorals (soft corals), not being fully considered. We de novo assembled the transcriptomes of four soft-coral species characterized by different calcification strategies (aragonite skeleton vs. calcitic sclerites) and data-mined published nonbilaterian transcriptome resources to construct a taxonomically comprehensive sequence database to map the distribution of scleractinian and octocoral skeletome components. Cnidaria shared no skeletome proteins with Placozoa or Ctenophora, but did share some skeletome proteins with Porifera, such as galaxin-related proteins. Within Scleractinia and Octocorallia, we expanded the distribution for several taxonomically restricted genes such as secreted acidic proteins, scleritin, and carbonic anhydrases, and propose an early, single biomineralization-recruitment event for galaxin sensu stricto. Additionally, we show that the enrichment of acidic residues within skeletogenic proteins did not occur at the Corallimorpharia-Scleractinia transition, but appears to be associated with protein secretion into the organic matrix. Finally, the distribution of octocoral calcification-related proteins appears independent of skeleton mineralogy (i.e., aragonite/calcite) with no differences in the proportion of shared skeletogenic proteins between scleractinians and aragonitic or calcitic octocorals. This points to skeletome homogeneity within but not between groups of calcifying cnidarians, although some proteins such as galaxins and SCRiP-3a could represent instances of commonality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available