4.4 Article

Discovery of novel Mnk inhibitors using mutation-based induced-fit virtual high-throughput screening

Journal

CHEMICAL BIOLOGY & DRUG DESIGN
Volume 94, Issue 4, Pages 1813-1823

Publisher

WILEY
DOI: 10.1111/cbdd.13585

Keywords

AML; eIF4E; Glide; IFD; Mnk1; Mnk2; vHTS

Funding

  1. National Cancer Institute [CA060553]

Ask authors/readers for more resources

Mnk kinases (Mnk1 and 2) are downstream effectors of Map kinase pathways and regulate phosphorylation of eukaryotic initiation factor 4E. Engagement of the Mnk pathway is critical in acute myeloid leukemia (AML) leukemogenesis and Mnk inhibitors have potent antileukemic properties in vitro and in vivo, suggesting that targeting Mnk kinases may provide a novel approach for treating AML. Here, we report the development and application of a mutation-based induced-fit in silico screen to identify novel Mnk inhibitors. The Mnk1 structure was modeled by temporarily mutating an amino acid that obstructs the ATP-binding site in the Mnk1 crystal structure while carrying out docking simulations of known inhibitors. The hit compounds display activity in Mnk biochemical and cellular assays, including acute myeloid leukemia progenitors. This approach will enable further rational structure-based drug design of new Mnk inhibitors and potentially novel ways of therapeutically targeting this kinase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemistry & Molecular Biology

Dihydropyrimidine derivatives as MDM2 inhibitors

Ali Mehri, Karim Mahnam, Hajar Sirous, Mahmoud Aghaei, Leila Rafiei, Mahboubeh Rostami

Summary: One potential approach for tumor therapy is inhibiting the binding between MDM2 and p53 to reactivate p53 in tumor cells. In this study, Monastrol derivatives were designed as MDM2 inhibitors and evaluated for their cytotoxicity on cancer cells. Compound 5d showed the best inhibitory results in silico and in vitro experiments. These findings suggest that Monastrol derivatives have the potential to be candidates for MDM2 inhibition.

CHEMICAL BIOLOGY & DRUG DESIGN (2024)