4.6 Article

Outstanding Room-Temperature Hydrogen Gas Detection by Plasma-Assisted and Graphene-Functionalized Core-Shell Assembly of SnO2 Nanoburflower

Journal

ACS OMEGA
Volume 4, Issue 6, Pages 11053-11065

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b01372

Keywords

-

Funding

  1. DST WOS-A (KIRAN) [SR/WOS-A/CS-1054/2015]
  2. Science and Engineering Research Board (SERB), Govt. of India for National Post Doctoral Fellowship (NPDF) [PDF/2017/002340/ES]

Ask authors/readers for more resources

Here, we have reported the synthesis of three-dimensional, mesoporous, nano-SnO2 cores encapsulated in nonstoichiometric SnO2 shells grown by chemical as well as physical synthesis procedures such as plasma-enhanced chemical vapor deposition, followed by functionalization with reduced graphene oxide (rGO) on the surface. The main motif to fabricate such morphology, i.e., core-shell assembly of burflower-like SnO2 nanobid is to distinguish gases quantitatively at reduced operating temperatures. Electrochemical results reveal that rGO anchored on SnO2 surface offers excellent gas detection performances at room temperature. It exhibits outstanding H-2 selectivity through a wide range, from similar to 10 ppm to 1 vol %, with very little cross-sensitivity against other similar types of reducing gases. Good recovery as well as prompt responses also added flair in its quality due to the highly mesoporous architecture. Without using any expensive dopant/catalyst/filler or any special class of surfactants, these unique SnO2 mesoporous nanostructures have exhibited exceptional gas sensing performances at room temperature and are thus helpful to fabricate sensing devices in most cost-effective and eco-friendly manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available