4.7 Article

Ehrenfest and classical path dynamics with decoherence and detailed balance

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 150, Issue 20, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.5095810

Keywords

-

Funding

  1. U.S. National Science Foundation [CHE-1900510]

Ask authors/readers for more resources

We present a semiclassical approach for nonadiabatic molecular dynamics based on the Ehrenfest method with corrections for decoherence and detailed balance. Decoherence is described via a coherence penalty functional that drives dynamics away from regions in Hilbert space characterized by large values of coherences. Detailed balance is incorporated by modification of the off-diagonal matrix elements with a quantum correction factor used in semiclassical approximations to quantum time-correlation functions. Both decoherence and detailed balance corrections introduce nonlinear terms to the Schrodinger equation. At the same time, the simplicity of fully deterministic dynamics and a single trajectory for each initial condition is preserved. In contrast, surface hopping is stochastic and requires averaging over multiple realization of the stochastic process for each initial condition. The Ehrenfest-decoherence-detailed-balance (Ehrenfest-DDB) method is adapted to the classical path approximation and ab initio time-dependent density functional theory and applied to an experimentally studied nanoscale system consisting of a fluorophore molecule and an scanning tunneling microscopy tip and undergoing current-induced charge injection, cooling, and recombination. Ehrenfest-DDB produces time scales that are similar to those obtained with decoherence induced surface hopping, which is a popular nonadiabatic molecular dynamics technique applied to condensed matter. At long times, Ehrenfest-DDB dynamics slows down considerably because the detailed balance correction makes off-diagonal elements go to zero on approach to Boltzmann equilibrium. The Ehrenfest-DDB technique provides efficient means to study quantum dynamics in large systems. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available