4.6 Article

Occurrence of electrical percolation threshold and observation of phase transition in chitosan(1-x):AgIx (0.05 ≤ x ≤ 0.2)-based ion-conducting solid polymer composites

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-016-0235-0

Keywords

-

Funding

  1. University of Sulaimani, Faculty of Science and Science Education-Department of Physics

Ask authors/readers for more resources

This paper reports on the investigation of electrical percolation threshold and ion transport mechanism for ion-conducting solid polymer composites based on chitosan. The composite samples were prepared by solution cast technique. The result of DC conductivity versus percolation threshold (Phi(-1/3)) confirmed that at low AgI concentration, the tunneling effect governs ionic conduction mechanism. Nevertheless, at high filler concentration, the DC conductivity showed a plateau behavior. The DC conductivity as a function of reciprocal temperature revealed that the ion conduction mechanism is slightly temperature dependent and the ion-ion correlational effect is dominant. A steep increase in DC conductivity above 323 K is observed, which indicated the existence of some phase transition near the beta (beta)-phase. The drop of DC conductivity at high temperatures is anticipated from the impedance plots. The AC conductivity spectrum exhibited three distinct regions at low temperatures. The high-frequency regions of AC conductivity spectra were almost temperature independent at low temperatures (303-323 K) and obeyed the Jonscher's power law. The variation in frequency exponent versus temperature reveals that ion conduction mechanism follows QMT and CBH models at low and high temperatures, respectively. The valuable achievement of this work is that the temperature dependence of DC conductivity and the frequency exponent (s) is correlated to interpret the Ag+ ion dynamic and ion-ion correlational effect. The Argand plots were used to explain the relaxation processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available