4.8 Article

Physical Expansion of Layered Graphene Oxide Nanosheets by Chemical Vapor Deposition of Metal-Organic Frameworks and their Thermal Conversion into Nitrogen-Doped Porous Carbons for Supercapacitor Applications

Journal

CHEMSUSCHEM
Volume 13, Issue 6, Pages 1629-1636

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201901436

Keywords

chemical vapor deposition; graphene; metal-organic frameworks; nitrogen-doped carbon; porous carbon

Funding

  1. Australian Research Council (ARC) [FT150100479]
  2. Cultural Affairs and Missions Sector of the Egyptian Ministry of Higher Education
  3. Japan Society for the Promotion Science [18F18038, 18F18764]
  4. Natural Science Foundation of Jiangsu Province [BK20170778]
  5. NSFC [51672128, 21773118, U1802256]
  6. Fundamental Research Funds for the Central Universities [CUSF-DH-d-2018001]
  7. China Scholarship Council [201806630044]
  8. Grants-in-Aid for Scientific Research [18F18764, 18F18038] Funding Source: KAKEN

Ask authors/readers for more resources

Graphene oxide (GO) nanosheets show good electrical conductivity and corrosion resistance in electrochemical devices. However, strong van der Waals attraction between adjacent nanosheets causes GO materials to collapse, reducing the exposed surfaces and limiting electron/ion transport in porous electrodes. GO nanosheets mixed with Zn-5(OH)(8)(NO3)(2) center dot 2 H2O (ZnON) nanoplates create a layered composite structure. Exposing the resultant GO/ZnON to 2-methylimidazole vapor leads to the conversion of ZnON into the zeolitic imidazolate framework ZIF-8. The transformation of ZnON into ZIF-8 leads to a huge physical expansion of the interlayer space between the GO sheets. Annealing the material at high temperature caused the ZIF-8 to be converted into highly porous nitrogen-doped carbon, but the GO nanosheets maintained a large separation and high surface area. The morphology and porous structure of the post-annealing carbon material was sensitive to the initial ratio of ZnON to GO. The optimized sample exhibited several favorable features, including a large surface area, high degree of graphitization, and a high amount of nitrogen doping. Using chemical vapor deposition of metal-organic frameworks to physically expand nanomaterials is a novel method to increase the surface area and porosity of materials. It enabled the synthesis of nanoporous carbon electrodes with high capacitance, good rate capability, and long cyclic stability in supercapacitor devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available