4.8 Article

Supersensitive Photoelectrochemical Aptasensor Based on Br,N-Codoped TiO2 Sensitized by Quantum Dots

Journal

ANALYTICAL CHEMISTRY
Volume 91, Issue 16, Pages 10864-10869

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b02600

Keywords

-

Funding

  1. National Natural Science Foundation (NNSF) of China [21575116, 21675129, 21775124]
  2. Fundamental Research Funds for the Central Universities [XDJK2018AA003]

Ask authors/readers for more resources

Here, we fabricated a novel photoelectrochemical (PEC) aptasensor based on Br,N-codoped TiO2/CdS quantum dots (QDs) sensitization structure with excellent energy level arrangement for supersensitive detection of carcinoembryonic antigen (CEA). The prepared Br,N-codoped TiO2 could reduce the energy bandwidth of TiO2 from 3.2 to 2.88 eV, which could dramatically reduce the basic signal and obviously broaden the absorption of light (400-700 nm). In addition, the energy bandwidth of Br,N-codoped TiO2 (2.88 eV) matched well with that of CdS QDs (2.4 eV), making CdS QDs an ideal signal enhancer for amplifying the photocurrent signal of Br,N-codoped TiO2. More importantly, the constructed Br,N-codoped TiO2/CdS QDs sensitization structure with narrow energy level gradient enabled the effective promotion of electron -transfer capability and dramatic improvement of photoelectric conversion efficiency. Simultaneously, a small amount of the CEA was transformed into substantial single-chain DNA (T-DNA) via exonuclease III (Exo-III)-assisted cycle strategy. Under optimum conditions, the designed PEC aptasensor demonstrated a wide detection range from 1 fg/mL to 1 ng/mL and a low detection limit as 0.46 fg/mL for CEA assay. This strategy prepared a new photoactive material to markedly improve photoelectric conversion efficiency and initiated a new way to realize the highly sensitive PEC biomolecules detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available