4.8 Article

Kernel-Based, Partial Least Squares Quantitative Structure-Retention Relationship Model for UPLC Retention Time Prediction: A Useful Tool for Metabolite Identification

Journal

ANALYTICAL CHEMISTRY
Volume 88, Issue 19, Pages 9510-9517

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.6b02075

Keywords

-

Ask authors/readers for more resources

We propose a new QSRR model based on a Kernel-based partial least-squares method for predicting UPLC retention times in reversed phase mode. The model was built using a combination of classical (physicochemical and topological) and nonclassical (fingerprints) molecular descriptors of 1383 compounds, encompassing different chemical classes and structures and their accurately measured retention time values. Following a random splitting of the data set into a training and a test set, we tested the ability of the model to predict the retention time of all the compounds. The best predicted/experimental R-2 value was higher than 0.86, while the best Q(2) value we observed was close to 0.84. A comparison of our model with traditional and simpler MLR and PLS regression models shows that KPLS better performs in term of correlation (R-2), prediction (Q(2)), and support to MetID peak assignment. The KPLS model succeeded in two real-life MetID tasks by correctly predicting elution order of Phase I metabolites, including isomeric monohydroxylated compounds. We also show in this paper that the model's predictive power can be extended to different gradient profiles, by simple mathematical extrapolation using a known equation, thus offering very broad flexibility. Moreover, the current study includes a deep investigation of different types of chemical descriptors used to build the structure retention relationship.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available