4.4 Article

Extracting the mechanisms and kinetic models of complex reactions from atomistic simulation data

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 40, Issue 16, Pages 1586-1592

Publisher

WILEY
DOI: 10.1002/jcc.25809

Keywords

ReaxFF; directed relation graph; reaction mechanism; reaction model; skeletal mechanism

Funding

  1. China Postdoctoral Science Foundation [2017M611541]
  2. National Basic Research Program of China (973 program) [2014CB239702]
  3. National Natural Science Foundation of China [21403138, 21473112, 21603141, 21604054, 21673138]

Ask authors/readers for more resources

Determining reaction mechanisms and kinetic models, which can be used for chemical reaction engineering and design, from atomistic simulation is highly challenging. In this study, we develop a novel methodology to solve this problem. Our approach has three components: (1) a procedure for precisely identifying chemical species and elementary reactions and statistically calculating the reaction rate constants; (2) a reduction method to simplify the complex reaction network into a skeletal network which can be used directly for kinetic modeling; and (3) a deterministic method for validating the derived full and skeletal kinetic models. The methodology is demonstrated by analyzing simulation data of hydrogen combustion. The full reaction network comprises 69 species and 256 reactions, which is reduced into a skeletal network of 9 species and 30 reactions. The kinetic models of both the full and skeletal networks represent the simulation data well. In addition, the essential elementary reactions and their rate constants agree favorably with those obtained experimentally. (c) 2019 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available