4.7 Article

Pair dispersion in dilute suspension of active swimmers

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 150, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5081006

Keywords

-

Funding

  1. James S. McDonnell Foundation
  2. NSF [DMR-1708280]

Ask authors/readers for more resources

Ensembles of biological and artificial microswimmers produce long-range velocity fields with strong nonequilibrium fluctuations, which result in a dramatic increase in diffusivity of embedded particles (tracers). While such enhanced diffusivity may point to enhanced mixing of the fluid, a rigorous quantification of the mixing efficiency requires analysis of pair dispersion of tracers, rather than simple one-particle diffusivity. Here, we calculate analytically the scale-dependent coefficient of relative diffusivity of passive tracers embedded in a dilute suspension of run-and-tumble microswimmers. Although each tracer is subject to strong fluctuations resulting in large absolute diffusivity, the small-scale relative dispersion is suppressed due to the correlations in fluid velocity which are relevant when the inter-tracer separation is below the persistence length of the swimmer's motion. Our results suggest that the reorientation of swimming direction plays an important role in biological mixing and should be accounted in the design of potential active matter devices capable of effective fluid mixing at microscale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available