4.8 Article

A Chemical Blowing Strategy to Fabricate Biomass-Derived Carbon-Aerogels with Graphene-Like Nanosheet Structures for High-Performance Supercapacitors

Journal

CHEMSUSCHEM
Volume 12, Issue 11, Pages 2462-2470

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201900267

Keywords

aerogels; biomass valorization; carbon; graphene; supercapacitors

Funding

  1. National Natural Science Foundation of China [21263016, 21363015, 51663017, 51662029, 21836006]
  2. Key Laboratory of Jiangxi Province for Environment and Energy Catalysis [2018BCD4004]

Ask authors/readers for more resources

The efficient exploitation and utilization of low-cost and biomass-derived carbon materials will play an active role in developing sustainable energy storage systems. However, the difficult morphology control and incomplete activation limits their pervasive application in electrochemical energy storage. Inspired by the famous Chinese folk handicraft of sugar-figure blowing, biomass-derived carbon aerogels (GCA) with 2 D graphene-like thin nanosheets were fabricated by a simple chemical blowing strategy from a viscous agaric solution obtained through hydrothermal treatment of agaric. A chemical blowing agent (NH4Cl) was used to effectively exfoliate the bulk biomass-derived carbon flake into 2 D graphene-like nanosheets, which resulted in a highly porous structure and high specific area (2200 m(2) g(-1)) after the activation process. As a result, a high specific capacitance of 340 F g(-1) at 3 A g(-1) and a high specific energy of 25.5 Wh kg(-1) at a power density of 2 kW kg(-1) was obtained for the GCA electrode, which can be attributed to the abundant electrochemically active surfaces, short ion transport paths, and effective electrolyte infiltration.. This work demonstrates an effective and low-cost strategy to prepare hierarchical and well-organized porous biomass carbon materials with graphene-like nanosheets for high-performance supercapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available