4.6 Article

Secondary Particle Formation during the Nonaqueous Synthesis of Metal Oxide Nanocrystals

Journal

LANGMUIR
Volume 34, Issue 43, Pages 12834-12844

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b00020

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [GA 1492/3-3]

Ask authors/readers for more resources

This study aims to elucidate the aggregation and agglomeration behavior of TiO2 and ZrO2 nanoparticles during the nonaqueous synthesis. We found that zirconia nanoparticles immediately form spherical-like aggregates after nucleation with a homogeneous size of 200 nm, which can be related to the metastable state of the nuclei and the reduction of surface free energy. These aggregates further agglomerate, following a diffusion-limited colloid agglomeration mechanism that is additionally supported by the high fractal dimension of the resulting agglomerates. In contrast, TiO2 nanoparticles randomly orient and follow a reaction-limited colloid agglomeration mechanism that leads to a dense network of particles throughout the entire reaction volume. We performed in situ laser light transmission measurements and showed that particle formation starts earlier than previously reported. A complex population balance equation model was developed that is able to simulate particle aggregation as well as agglomeration, which eventually allowed us to distinguish between both phenomena. Hence, we were able to investigate the respective agglomeration kinetics with great agreement to our experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available