4.5 Article

High loading rice husk green composites: Dimensional stability, tensile behavior and prediction, and combustion properties

Journal

JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS
Volume 33, Issue 7, Pages 882-897

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0892705718815536

Keywords

High loading fiber biocomposite; agricultural waste; physical properties; mechanical properties; micromechanical modeling

Ask authors/readers for more resources

High-fiber loading green composites were prepared from recycled high-density polyethylene (rHDPE)/recycled polyethylene terephthalate (rPET) blend matrix and rice husk (RH) as filler (from 40 wt% up to 80 wt%) via corotating twin-screw extruder and compression molding. The water absorption (WA) upon immersion in sea water, mechanical behavior, and combustion enthalpy of green composites were examined. The WA mechanisms obeyed the Fickian diffusion. The computed diffusion coefficient (D), thermodynamic solubility (S), permeability (P), and orthotropic swelling were generally increased as a function of RH filler. The increment of tensile strength and modulus of composites were maximized up to 16% and 121%, respectively, which was achieved at 70 wt% RH filler. The theoretical prediction of tensile strength and Young's modulus from micromechanical models for random oriented RH fiber/blend composites were compared with the experimental results. As the RH weight fraction increased, the combustion enthalpy decreased (by approximately 30-48%) and thereby the enhancing the fire retardancy of green composite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available