4.8 Article

AF4-UV-MALS-ICP-MS/MS, spICP-MS, and STEM-EDX for the Characterization of Metal-Containing Nanoparticles in Gas Condensates from Petroleum Hydrocarbon Samples

Journal

ANALYTICAL CHEMISTRY
Volume 91, Issue 1, Pages 1164-1170

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b05010

Keywords

-

Funding

  1. University of Aberdeen through the Elphinstone scholarship

Ask authors/readers for more resources

The coupling of flow field flow fractionation (FlEFF) with ICP-MS/MS for the fractionation and analysis of natural nanoparticles (NPs) in environmental samples is becoming more popular. However, the applicability of this technique to nonaqueous samples, such as gas condensates from petroleum hydrocarbon samples, has not been reported yet. In this study, an asymmetric flow-field flow fractionation (AF4) system coupled with UV and MALS detectors has been optimized to perform the fractionation of natural NPs present in a gas condensate sample, using THF as the carrier liquid. Prior to this, STEM images indicated the presence of both large (200 nm and more) and smaller (50 nm and less) particles, whose irregular shape is probably due to agglomeration. AF4-UV-MALS-ICP-MS/MS confirmed the presence of various NPs and colloids, some containing aromatic compounds as well as various metals, including Hg. The recovery against an injection without crossflow is around 75% for most metals. The presence of Hg-containing NPs was confirmed with offline single particle ICP-MS (spICP-MS), using THF as a solvent. These NPs were identified as HgS using STEM-EDX. These results highlight, for the first time, that particulate matter may contaminate gas condensates with a series of elements (Al, P, S, Ti, V, Mn, Fe, Co, Cu, Zn, As, Se, Cd, Hg, and Pb), which can make the upstream use problematic, especially for mercury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available