4.6 Article

High redox activity of Sr-substituted lanthanum manganite perovskites for two-step thermochemical dissociation of CO2

Journal

RSC ADVANCES
Volume 4, Issue 97, Pages 54885-54891

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra10578h

Keywords

-

Funding

  1. Airbus Group Corporate Foundation [CNRS CT 084210]
  2. CNRS (defi ENRS, VALTHER-CO2 project)

Ask authors/readers for more resources

The La1-xSrxMnO3-delta series of non-stoichiometric perovskites (x = 0.35, 0.50, 0.65, 0.80) was examined in the context of solar-driven two-step thermochemical dissociation of CO2. Powder X-ray diffraction and thermochemical performance characterization were performed in order to assess the redox activity of these materials toward thermal reduction under inert atmosphere followed by re-oxidation for CO generation from CO2. To a certain extent, controlled introduction of Sr2+ into LaMnO3 allowed tuning the redox thermodynamics within the series, thus resulting in high activity toward both thermal reduction and CO2 dissociation. La0.50Sr0.50MnO3-delta composition appeared to be the most suitable trade-off for thermochemical CO2 splitting. Maximum CO production of about 270 mu mol g(-1) was reached during the CO2 splitting step with an optimal re-oxidation temperature of 1050 degrees C (after thermal reduction under Ar at 1400 degrees C), although the re-oxidation yield was limited to around 50%. Decreasing the amount of substituted Sr enhanced the re-oxidation yield at the expense of a lower final reduction extent, thus lowering the global amount of produced CO. The evolution of the Mn oxidation state implied partial re-oxidation of Mn3+ into Mn4+, thereby confirming the activation of Mn4+/Mn3+ redox pair in the perovskites. An elevated electronic transfer occurred within the Mn4+/Mn3+ redox pair (superior to that involved in the case of ceria within the Ce4+/Ce3+ redox pair), showing that mixed valence perovskites have clear potential for displaying redox properties suitable for efficient solar-driven thermochemical CO2 dissociation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available