4.6 Article

Reversible-deactivation radical polymerization of chloroprene and the synthesis of novel polychloroprene-based block copolymers by the RAFT approach

Journal

RSC ADVANCES
Volume 4, Issue 98, Pages 55529-55538

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra08715a

Keywords

-

Funding

  1. China National Natural Science Funds [51073010, 51373021]

Ask authors/readers for more resources

Reversible addition-fragmentation chain transfer (RAFT) polymerization of the reactive monomer chloroprene (2-chloro-1,3-butadiene) mediated by ethyl 2-(ethoxycarbonyl)prop-2-yl dithiobenzoate (EPDTB), 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid (CPDTB) and dibenzyl trithiocarbonate (DBTTC) was investigated in benzene using 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Polychloroprene (PCP) chains with predetermined molecular weights and low molar mass dispersities were synthesized by RAFT polymerization using EPDTB and CPDTB. The work described here also showed for the first time that well-defined polystyrene-block-polychloroprene (PSt-b-PCP) and poly(methyl methacrylate)-block-polychloroprene (PMMA-b-PCP) with controlled number averaged molecular weights and molecular weight distributions can be prepared in solution polymerization, employing EPDTB and 2-cyanoprop-2-yl dithiobenzoate (CPDB), respectively, as the initial RAFT agent. The success of the block copolymerization was showed by the shift toward higher molar mass of the size exclusion chromatography (SEC) chromatograms recorded before and after block copolymerization. Structural confirmation of the diblock copolymers was accomplished by H-1 NMR measurements. The results obtained from SEC analysis together with H-1 NMR spectroscopy demonstrate the possibility to design and prepare well-defined PCP-based block copolymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available