4.6 Article

Design and green synthesis of polymer inspired nanoparticles for the evaluation of their antimicrobial and antifilarial efficiency

Journal

RSC ADVANCES
Volume 4, Issue 65, Pages 34487-34499

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra03732d

Keywords

-

Funding

  1. DST-SERB [SR/S3/ME/0018/2010]
  2. UGC, Govt. of India

Ask authors/readers for more resources

Polymer inspired silver nano particles (AgNPs), endowed with high biochemical potency and very low cytotoxicity, were designed and synthesized through a tyrosine controlled green process. In contrary to other conventional techniques, the process was so optimized so that the least amount of reducing and stabilizing agents could generate the maximum possible amount of stable nanoparticles. The role of tyrosine as reducing as well as stabilizing agent was found to be dependent on the level of its concentration. Biocompatible polymers inspired the stability and biological activity of the synthesized nanoparticles to a great extent. The formation of AgNPs was monitored spectroscopically (UV-Vis) both in the presence and absence of biocompatible polymers. Biochemical effects of the polymer stabilized metal nano particles were studied in terms of antiparasitic (antifilarial), antibacterial and antifungal activities. The particles were found to be strongly interactive with the principle cellular bio-molecule (viz. DNA and protein) which might be the reason behind their bioactivity. Particularly against filarial parasites, the synthesized AgNPs were able to induce apoptosis through increasing the level of key regulator of cell death and fragmentation of genomic DNA. Among the biocompatible polymers used, chitosan improved the stability and bio-activity of the composites significantly as evident from the bioactivity and molecular studies like Circular Dichorism (CD) spectroscopic analysis as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available