4.6 Article

Zirconia nanoparticles/ferroelectric liquid crystal composites for ionic impurity-free memory applications

Journal

RSC ADVANCES
Volume 3, Issue 38, Pages 17166-17173

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra41964a

Keywords

-

Funding

  1. Council of Scientific and Industrial Research (CSIR), India [CSIR-PGRPE/2011-13, HRDG/CSIR-Nehru PDF/PS/EMR-I/01/2011]
  2. Department of Science and Technology [IFA-PH-10]

Ask authors/readers for more resources

We observed an ionic impurity-free memory effect using a zirconia nanoparticles (ZNPs)/ferroelectric liquid crystal (FLC) composite. The pure and ZNPs doped FLC cells have been analyzed by means of dielectric spectroscopy, polarizing optical microscopy and electrical resistance/conductivity measurements. The memory behavior in ZNPs/FLC composite was confirmed by dielectric dispersion, electrical, and optical studies, whereas dielectric loss spectra confirmed the disappearance of the low-frequency relaxation peak, which appears due to the presence of ionic impurities in FLC materials. The observed memory effect has been attributed to minimization of the depolarization field and ionic charges, whereas the reduction of ionic effects has been attributed to the strong adsorption of ionic impurities on the surface of ZNPs. The ZNPs dispersed in FLCs may play a role in trapping the impurity ions (minimize the depolarization fields) under applied voltage and cause a better memory effect in ZNPs doped FLC material. Moreover, the ion adsorption capability of ZNPs is found to be almost independent of temperature as the value of resistance did not change remarkably on increasing the temperature. The reduction of ionic impurities of FLCs by doping ZNPs did not show degradation over time, as we repeated the experiments on the same sample cells after many days and did not find ionic effects in the ZNPs doped FLC materials. These studies would be helpful to provide an idea for designing ionic impurity-free memory devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available