4.6 Article

Influence of CeO2 modification on the properties of Fe2O3-Ti0.5Sn0.5O2 catalyst for NO reduction by CO

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 4, Issue 2, Pages 482-493

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cy00703k

Keywords

-

Funding

  1. National Natural Science Foundation of China [20973091, 20763001]
  2. National Basic Research Program of China (973 program) [2010CB732302, 2012CB21500203]
  3. Science Foundation of Guangxi University [XBZ120768]
  4. Guangxi Province Science and Technology Research Program [2013LX017]

Ask authors/readers for more resources

Fe2O3-CeO2-Ti0.5Sn0.5O2 catalysts were prepared by a wet impregnation method and were characterized using XRD, LRS, EPR, H-2-TPR, in situ IR, as well as the activity test for the removal of NO by CO. The results showed that the Fe2O3 and CeO2 are highly dispersed on the surface of Ti0.5Sn0.5O2 (the loading of Fe2O3 and CeO2 are 1.2 mmol Fe per 100 m(2) and 0.4 mmol Ce per 100 m(2), respectively). When the iron oxide loading is increased, the isolated Fe3+ ions change into the polymeric Fe3+ clusters and ceria addition also further promotes the formation of polymeric Fe3+ clusters. Catalysts modified with ceria display better performance in activity, and this would result from the formation of the more polymeric Fe3+ clusters, which are more easily reduced to Fe2+ ions under CO atmosphere. In situ FT-IR results indicated that the Fe2+ ions generated from the reduction of Fe3+ ions are primary active sites for NO + CO reactions. A possible reaction mechanism is tentatively proposed. In the reaction atmosphere, NO adsorbed on the surface of the catalysts forms several types of nitrite species. With the increase of temperature, bridging bidentate nitrate species transform into chelating nitro species, which react with CO gas to produce CO2 + N2O. When temperature reaches beyond 200 degrees C, NO adsorbed on Fe2+ ions (reduction of Fe3+ ions) reacts with carbonate species adsorbed on the surface of the catalysts, and produces CO2 + N-2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide

Xuanxuan Jia, Hao Liu, Yu Zhang, Wei Chen, Qing Tong, Guangxia Piao, Chuanzhi Sun, Lin Dong

Summary: A novel Fe-Sb binary metal oxide catalyst was synthesized, showing excellent activity and stability in the NH3 selective catalytic reduction of NO reaction. The introduction of Sb improved the adsorption behavior of NOx species on the catalyst surface, contributing to enhanced efficiency of the NH3-SCR reaction.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2021)

Article Engineering, Environmental

Ce-Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH3-SCR Reaction through the Mechanism-Enhanced Process

Wei Tan, Annai Liu, Shaohua Xie, Yong Yan, Thomas E. Shaw, Yu Pu, Kai Guo, Lulu Li, Shuohan Yu, Fei Gao, Fudong Liu, Lin Dong

Summary: Investigating catalytic reaction mechanisms can guide catalyst design, as demonstrated by the innovative CeO2-SiO2 mixed oxide catalyst (CeSi2) with excellent SO2/H2O resistance in harsh working conditions. The strong Ce-O-Si interaction and abundant surface hydroxyl groups on CeSi2 provide active acid sites and inhibit SO2 adsorption, enhancing the NH3-SCR performance through an enhanced Eley-Rideal mechanism. This work offers a strategy to develop an environmentally friendly NH3-SCR catalyst with superior SO2 resistance.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2021)

Article Chemistry, Physical

Highly stable Pt3Ni ultralong nanowires tailored with trace Mo for the ethanol oxidation

Mingxuan Li, Yandi Cai, Jinjin Zhang, Haixiao Sun, Zhi Li, Yujie Liu, Xin Zhang, Xiaoping Dai, Fei Gao, Weiyu Song

Summary: The study successfully enhanced the specific activity of ethanol oxidation reaction by synthesizing Pt3Ni nanowires with tailored structure, improving catalyst stability, and providing a promising pathway for the design and development of durable alloy nanocatalysts for direct ethanol fuel cell applications.

NANO RESEARCH (2022)

Article Chemistry, Physical

PtNiCu nanowires with advantageous lattice-plane boundary for enhanced ethanol electrooxidation

Shuna Li, Yao Wang, Yunrui Li, Xu Fang, Yujie Liu, Mingxuan Li, Zhen Wang, Yufeng Gao, Haixiao Sun, Fei Gao, Xin Zhang, Xiaoping Dai

Summary: This study presents a simple method to synthesize e-PtNiCu NWs with high proportions of (110) and (100) facets, which exhibit remarkable performance in ethanol electrooxidation reaction. The improved performance of e-PtNiCu NWs is attributed to the synergistic catalytic effect between (110) and (100) facets. The thermodynamics and kinetic studies suggest that the synergistic effect of both facets can decrease the activation energy barrier and facilitate the charge transfer during the reaction.

NANO RESEARCH (2022)

Article Chemistry, Physical

Copper Single Atom-Triggered Niobia-Ceria Catalyst for Efficient Low-Temperature Reduction of Nitrogen Oxides

Shaohua Xie, Wei Tan, Yuejin Li, Lu Ma, Steven N. Ehrlich, Jiguang Deng, Peng Xu, Fei Gao, Lin Dong, Fudong Liu

Summary: In this study, an efficient NbCuCe oxide catalyst for reducing NOx emissions in cold-start diesel engines is reported. The catalyst exhibits higher DeNO(x) activity below 200 degrees C compared to the Cu-CHA zeolite catalyst, along with superior sulfur resistance, faster response, and lower NH3 slip. Atomically dispersed Cu species facilitate strong interaction between Cu and the Nb/Ce base catalyst, leading to improved low-temperature redox properties and NH3 adsorption/activation. The developed NbCuCe catalyst shows promising potential for efficient DeNO(x) in cold-start diesel engines and can be combined with Cu-CHA for a broader temperature range of operation.

ACS CATALYSIS (2022)

Article Chemistry, Physical

Interfacial synergistic effect in SnO2/PtNi nanocrystals enclosed by high-index facets for high-efficiency ethylene glycol electrooxidation

Shuna Li, Haixiao Sun, Jiaai Zhang, Longjiao Zheng, Yunrui Li, Xu Fang, Yujie Liu, Qi Song, Zhen Wang, Yufeng Gao, Xin Zhang, Xiaoping Dai, Yandi Cai, Fei Gao

Summary: Strengthening the oxide-metal interfacial synergistic interaction in nanocatalysts is an effective strategy to enhance the intrinsic activities and availability of active sites. In this study, SnO2/PtNi concave nanocubes enclosed by high-index facets were successfully fabricated and exhibited significantly improved catalytic performance for electrooxidation reactions. The strong interfacial interaction between SnO2 and PtNi not only reduces the activation energy barrier but also enhances the catalyst's CO-resistance and long-term stability.

NANO RESEARCH (2022)

Article Chemistry, Physical

Synergistic effect of Cu+ single atoms and Cu nanoparticles supported on alumina boosting water-gas shift reaction

Zhonghui Cui, Song Song, Huibin Liu, Yingtian Zhang, Fei Gao, Tong Ding, Ye Tian, Xiaobin Fan, Xingang Li

Summary: By constructing dual-site copper catalysts with Cu+ single atoms and Cu nanoparticles, this study successfully enhances the water-gas shift reaction, increasing CO adsorption and catalytic activity, especially performing better at low temperatures.

APPLIED CATALYSIS B-ENVIRONMENTAL (2022)

Article Chemistry, Physical

,, Determination of Intrinsic Active Sites on CuO-CeO2-Al2O3 Catalysts for CO Oxidation and NO Reduction by CO: Differences and Connections

Wei Tan, Shaohua Xie, Xin Wang, Juntian Xu, Yong Yan, Kaili Ma, Yandi Cai, Kailong Ye, Fei Gao, Lin Dong, Fudong Liu

Summary: In this study, an efficient CuO catalyst supported on a CeO2-Al2O3 support (CA-T) prepared by two-step incipient wetness impregnation (T-IWI) method was successfully developed. The Cu/CA-T catalyst exhibited better catalytic performance in CO oxidation and NO reduction by CO (NO + CO reaction) as well as higher thermal stability compared to the CuO catalyst loaded on conventional CeO2-Al2O3 support (Cu/CA). The microstructure of CuO-CeO2-Al2O3 catalysts, especially the state of Cu species, was systematically investigated using various characterization techniques. The mechanisms of CO oxidation and NO + CO reactions on Cu/CA and Cu/CA-T catalysts were collaboratively revealed.

ACS CATALYSIS (2022)

Article Chemistry, Applied

Getting insights into gas-phase sulfation effect on catalytic performance of praseodymium oxides in NH3-SCR of NO*

Yandi Cai, Peng Yang, Qinglong Liu, Kaili Ma, Wenxin Ma, Wang Song, Qiuhui Qian, Fei Gao, Wei Tan, Lin Dong

Summary: Sulfation treatment with different durations was performed on PrOx, and it was found that the catalytic performance of sulfated PrOx in the NH3-SCR of NO is highly dependent on the sulfation time. This study provides new insights into tuning the interaction between the PrOx surface and reactants (NO, NH3) via sulfation treatment, which can guide the design and application of PrOx-based catalysts for NH3-SCR of NO in the future.

JOURNAL OF RARE EARTHS (2023)

Article Multidisciplinary Sciences

Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity

Wei Tan, Shaohua Xie, Duy Le, Weijian Diao, Meiyu Wang, Ke-Bin Low, Dave Austin, Sampyo Hong, Fei Gao, Lin Dong, Lu Ma, Steven N. Ehrlich, Talat S. Rahman, Fudong Liu

Summary: Constructing single atom catalysts with fine-tuned coordination environments can lead to satisfactory catalytic performance. By controlling the calcination temperature, CeO2 supported Pt single atom catalysts with precisely controlled coordination environments were successfully synthesized. The different Pt-CeO2 coordination environments have an impact on reactant adsorption/activation and product desorption, thus resulting in different catalytic performance.

NATURE COMMUNICATIONS (2022)

Article Chemistry, Physical

The enhancement effect of Nb over CeSi2 catalyst for the low-temperature NH3-SCR performance

Lipeng Ding, Shaoxiong Zhang, Qinglong Liu, Peng Yang, Yandi Cai, Wei Tan, Wang Song, Fei Gao, Lin Dong

Summary: Catalysts for Nb/CeSi2 with different loadings of niobium were synthesized and evaluated for NH3-SCR performance over a broad temperature range. The 20Nb/CeSi2 catalyst exhibited the best low-temperature NH3-SCR performance while maintaining excellent SO2/H2O resistance. The addition of niobium resulted in variations in the surface structure, specific surface area, and acidity of the catalyst, which facilitated the SCR reaction. The interaction between niobium and ceria was found to enhance the activation of inert surface nitrate, contributing to the improvement of the catalyst performance at low temperature.

CHEMICAL PHYSICS IMPACT (2023)

Article Engineering, Environmental

Surface Lattice-Embedded Pt Single-Atom Catalyst on Ceria-Zirconia with Superior Catalytic Performance for Propane Oxidation

Wei Tan, Shaohua Xie, Yandi Cai, Haowei Yu, Kailong Ye, Meiyu Wang, Weijian Diao, Lu Ma, Steven N. Ehrlich, Fei Gao, Lin Dong, Fudong Liu

Summary: A highly efficient Pt single-atom catalyst was constructed for the catalytic oxidation of C3H8 by calcination of Pt catalysts on pre-stabilized Ce0.9Zr0.1O2 support. The Pt single atoms with different strengths of Pt-CeO2 interaction and coordination environment were successfully achieved by controlling the calcination temperatures. The Pt/CZO-750 catalyst exhibited higher C3H8 oxidation activity than Pt/CZO-550, attributed to the higher concentration of surface Ce3+ species/oxygen vacancies and stronger Pt-CeO2 interaction.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Engineering, Environmental

Tuning the Interaction between Platinum Single Atoms and Ceria by Zirconia Doping for Efficient Catalytic Ammonia Oxidation

Wei Tan, Yandi Cai, Haowei Yu, Shaohua Xie, Meiyu Wang, Kailong Ye, Lu Ma, Steven N. Ehrlich, Fei Gao, Lin Dong, Fudong Liu

Summary: This study proposes a facile ZrO2 doping strategy to construct Pt-1/CexZr1-xO2 catalysts for eliminating harmful NH3 slip from stationary flue gas denitrification and diesel exhaust aftertreatment systems. The study finds that Pt/Ce0.9Zr0.1O2 catalyst exhibits the strongest Pt-CeO2 interaction and highest Pt-O-Ce coordination number, resulting in superior NH3 oxidation activity.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Regulating the Pt1-CeO2 interaction via alkali modification for boosting the catalytic performance of single-atom catalysts

Peng Yang, Juntian Xu, Wei Tan, Qinglong Liu, Yandi Cai, Shaohua Xie, Song Hong, Fei Gao, Fudong Liu, Lin Dong

Summary: The catalytic oxidation performance of the Pt-1/CeO2 catalyst was greatly improved with the introduction of potassium species. Potassium ions acted as structural and electronic promoters, forming Pt-O-K interactions with Pt to directly regulate the coordination environment and electronic state of Pt, as well as the metal-support interaction between Pt and CeO2.

CHEMICAL COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement

Fei Gao, Annai Liu, Wei Tan, Bing Hu, Ruihan Gong, Xing Cheng, Fudong Liu, Ge Chen, Lin Dong

Summary: A Ti3+-rich rutile TiO2 with a surface lattice expansion structure was prepared by H-2 treatment. The supported Pt single atoms on this surface were stabilized in a highly oxidized state and had a weaker affinity for CO, resulting in robust catalytic performance.

CHEMICAL COMMUNICATIONS (2022)

Article Chemistry, Physical

Introducing carbon dots to NiFe LDH via a mild coprecipitation-aging method to construct a heterojunction for effective oxygen evolution

Zi-Ye Liu, Qian-Yu Wang, Ji-Ming Hu

Summary: In this study, a layered carbon dot composite catalyst (NiFe LDH@CDs) was prepared using a one-step coprecipitation method, without the need for heating or hydrothermal treatment. The CD-functionalized catalyst facilitated rapid charge transfer and accelerated the oxygen evolution reaction. Additionally, the heterojunction structure formed between NiFe LDH and CDs efficiently suppressed photoelectron-hole recombination.

CATALYSIS SCIENCE & TECHNOLOGY (2024)

Article Chemistry, Physical

A general and expedient amination of alcohols catalysed by a single-site (NN)Co(ii)-bidentate complex under solventless conditions

Rohit Kumar, Ankit Kumar Srivastava, Palaniyappan Nagarasu, Vedichi Madhu, Ekambaram Balaraman

Summary: We designed and synthesized a NN-CoII bidentate complex and used it for the amination of alcohols under mild and solventless conditions. The complex exhibited good reactivity towards both primary and sterically hindered secondary alcohols, providing high yields of amines. The pyrazole moiety in the ligand played a crucial role in the reaction. Furthermore, we demonstrated the reusability of the complex as a homogeneous cobalt catalyst.

CATALYSIS SCIENCE & TECHNOLOGY (2024)

Article Chemistry, Physical

Cu2O facet controlled reactivity for peroxidase-like activity

Shivanand Chettri, Liang-Ting Wu, Sagarmani Rasaily, Debesh Sharma, Bikram Gurung, Rajani Dewan, Sudarsan Tamang, Jyh-Chiang Jiang, Anand Pariyar

Summary: Replicating the enzymatic surface microenvironment in vitro is challenging, but constructing an analogous model could facilitate our understanding of surface effects and aid in developing an efficient bioinspired catalytic system. In this study, five unique Cu2O morphologies were generated, and the surface morphology variations were found to be a consequence of differences in the exposure of low-index facets. The reactivity of Cu2O was found to be influenced by the proportion of {110} planes, with r-Cu2O exhibiting the highest reactivity.

CATALYSIS SCIENCE & TECHNOLOGY (2024)

Article Chemistry, Physical

Defect-engineered Zr-MOFs with enhanced O2 adsorption and activation for photocatalytic H2O2 synthesis

Yong Tang, Jianhao Qiu, Dingliang Dai, Guanglu Xia, Lu Zhang, Jianfeng Yao

Summary: Defect engineering has been shown to improve the photocatalytic performance. This study investigated the use of defect-rich UiO-66-NH2 wrapped by ZnIn2S4 as a catalyst for photocatalytic H2O2 production. The defects in UiO-66-NH2 enhanced O-2 adsorption and charge separation, leading to higher H2O2 yield. The insights from this work can advance the research in defect engineering of MOFs and photocatalytic H2O2 synthesis.

CATALYSIS SCIENCE & TECHNOLOGY (2024)

Article Chemistry, Physical

Selective hydrogenation of amides and imides over heterogeneous Pt-based catalysts

Ruiyang Qu, Shuxin Mao, Jana Weiss, Vita A. Kondratenko, Evgenii V. Kondratenko, Stephan Bartling, Haifeng Qi, Annette-Enrica Surkus, Kathrin Junge, Matthias Beller

Summary: The hydrogenation of amides, a challenging reaction usually performed at high temperatures, has been achieved under milder conditions using a new Pt-MoOx/TiO2 catalyst. This catalyst system enables the selective hydrogenation of various amides and imides.

CATALYSIS SCIENCE & TECHNOLOGY (2024)

Article Chemistry, Physical

Intermetallic PdCu3 supported on nanodiamond-graphene for semi-hydrogenation of Phenylacetylene

Xiaoran Niu, Ao Wang, Lei Tong, Lei Wang, Yuan Kong, Chenliang Su, Hai-Wei Liang

Summary: This study introduces a novel intermetallic PdCu3 catalyst supported on defective nanodiamond-graphene (ND@G), which exhibits high selectivity (95%) and remarkable activity (turnover frequency: 2940 h(-1)), six times higher than that of the commercial Lindlar catalyst.

CATALYSIS SCIENCE & TECHNOLOGY (2024)

Review Chemistry, Physical

Strategies for the proton-coupled multi-electron reduction of CO2 on single-atom catalysts

Zhiyuan Zheng, Yiming Yue, Hongying Zhuo, Qinggang Liu, Yanqiang Huang

Summary: This review presents the recent research advances on single-atom catalysis for deep reduction of CO2. Detailed introductions and summaries were classified into three categories based on proton-coupled multi-electron transfer approaches: strengthening metal-support interaction, rational design and regulation of coordination environment, and development of SACs with multi-atom active sites. The challenges and future research directions in the field of SACs for CO2 reduction are also proposed.

CATALYSIS SCIENCE & TECHNOLOGY (2024)

Article Chemistry, Physical

Denitrogenation of tosylhydrazones: synthesis of aryl alkyl sulfones catalyzed by a phenalenyl-based molecule

Shiv Kumar, Paramita Datta, Anup Bhunia, Swadhin K. Mandal

Summary: This article reports a transition-metal-free process for in situ denitrogenation of tosylhydrazones, resulting in the production of various sulfones. The authors used a phenalenyl-based odd alternant hydrocarbon as a photoredox catalyst, which acted as a potent oxidant to facilitate the denitrogenation reaction. The method showed wide functional-group tolerance and high yields, making it suitable for late-stage modification of natural products.

CATALYSIS SCIENCE & TECHNOLOGY (2024)

Article Chemistry, Physical

Mechanistic insights into methanol carbonylation to methyl acetate over an efficient organic template-free Cu-exchanged mordenite

L. A. Luque-Alvarez, J. Gonzalez-Arias, F. Romero-Sarria, T. R. Reina, L. F. Bobadilla, J. A. Odriozola

Summary: Currently, the production of acetic acid through the carbonylation reaction of methanol has limitations, leading to the exploration of alternative methods using heterogeneous catalysts. This study investigates the methanol carbonylation reaction over a Cu-H-MOR catalyst and proposes a reaction mechanism based on the catalytic behavior and performance of the catalyst. The results provide insights into the reaction mechanism and the involvement of acid and redox centers.

CATALYSIS SCIENCE & TECHNOLOGY (2024)