4.6 Article

Ultralow-threshold up-converted lasing in oligofluorenes with tailored strong nonlinear absorption

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 3, Issue 46, Pages 12018-12025

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tc02247a

Keywords

-

Funding

  1. EU-FP7 Nanophotonics4Energy NoE
  2. TUBITAK EEEAG [109E002, 109E004, 110E010, 110E217, 112E183, 114E410]
  3. ESF-EURYI
  4. TUBA-GEBIP
  5. Singapore National Research Foundation [NRF-RF-2009-09, NRF-CRP-6-2010-02]
  6. Science and Engineering Research Council, Agency for Science, Technology and Research (A*STAR) of Singapore [092 101 0057, 112 120 2009]
  7. EPSRC [EP/I029141]
  8. Royal Society for a Wolfson Research Merit Award

Ask authors/readers for more resources

Nonlinear optical response in organic semiconductors has been an attractive property for many practical applications. For frequency up-converted lasers, to date, conjugated polymers, fluorescent dyes and small organic molecules have been proposed but their performances have been severely limited due to the difficulty in simultaneously achieving strong nonlinear optical response and high performance optical gain. In this work, we show that structurally designed truxene-based star-shaped oligofluorenes exhibit strong structure-property relationships enabling enhanced nonlinear optical response with favorable optical gain performance. As the number of fluorene repeat units in each arm is increased from 3 to 6, these molecules demonstrate a two-photon absorption cross-section as high as 2200 GM, which is comparable to that of linear conjugated polymers. Tailored truxene oligomers with six fluorene units in each arm (T6) show two-photon absorption pumped amplified spontaneous emission with a threshold as low as 2.43 mJ cm(-2), which is better than that of the lowest reported threshold in organic semiconductors. Furthermore, we show a frequency up-converted laser using the newly designed and synthesized star-shaped oligomer T6 with a threshold as low as 3.1 mJ cm(-2), which is more than an order of magnitude lower than that of any conjugated polymer. Thus, these oligomers with enhanced nonlinear optical properties are highly attractive for bio-integrated applications such as photodynamic therapy and in vivo bio-sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Measuring the Ultrafast Spectral Diffusion and Vibronic Coupling Dynamics in CdSe Colloidal Quantum Wells using Two-Dimensional Electronic Spectroscopy

Hoang Long Nguyen, Thanh Nhut Do, Emek G. Durmusoglu, Merve Izmir, Ritabrata Sarkar, Sougata Pal, Oleg V. Prezhdo, Hilmi Volkan Demir, Howe-Siang Tan

Summary: In this study, the ultrafast spectral diffusion, vibronic dynamics, and energy relaxation of CdSe colloidal quantum wells (CQWs) at room temperature were measured using two-dimensional electronic spectroscopy (2DES). The energy relaxation from light-hole (LH) excitons to heavy-hole (HH) excitons was observed to occur within a time scale of approximately 210 fs. Equilibration dynamics between the spectroscopically accessible HH excitonic state and a dark state were found to take place within a time scale of approximately 160 fs. The spectral diffusion dynamics in HH excitons were analyzed using center line slope analysis, revealing a sub-200 fs decay and oscillatory features resolved at 4 and 25 meV. Quantum calculations were performed to replicate and explain the observed dynamics. The 4 meV mode was found to be in the near-critically damped regime and may mediate the transition between the bright and dark HH excitons. These findings demonstrate the capability of 2DES to comprehensively and detailedly characterize the ultrafast spectral properties in CQWs and similar nanomaterials.

ACS NANO (2023)

Article Biochemical Research Methods

MicroLED biosensor with colloidal quantum dots and smartphone detection

Natalie Bruce, Francesca Farrell, Enyuan Xie, Mark G. Scullion, Anne-Marie Haughey, Erdan Gu, Martin D. Dawson, Nicolas Laurand

Summary: A fluorescence sensor capable of spatially multiplexed measurements using smartphone detection is introduced. Bioconjugated quantum dots are employed as the fluorescent label and excited by a blue-emitting microLED. The one-dimensional GaN microLED array is butt-coupled to one edge of a glass slide to utilize total internal reflection fluorescence (TIRF) principles. Bioassays on the glass waveguide's top surface are excited, and the resulting fluorescence is detected using a smartphone. The red, green, and blue channels of the digital image are used to spectrally separate the excitation light from the fluorescence for analysis. Proof-of-principle experiments using a biotin-functionalized glass slide demonstrate the detection of streptavidin conjugated quantum dots down to a concentration of 8 nM.

BIOMEDICAL OPTICS EXPRESS (2023)

Article Optics

Efficient Reconstruction of Low Photon Count Images from a High Speed Camera

Graeme E. Johnstone, Johannes Herrnsdorf, Martin D. Dawson, Michael J. Strain

Summary: Challenging imaging applications that require ultra-short exposure times or imaging in photon-starved environments often have extremely low numbers of photons per pixel (<1 photon per pixel). To improve the image quality in such photon-sparse images, post-processing techniques, such as Bayesian retrodiction and bilateral filtering, can be used to estimate the number of photons detected and improve the spatial distributions in single-photon imaging applications. In this study, we demonstrate that at high frame rates (>1 MHz) and low incident photon flux (<1 photon per pixel), image post-processing techniques can provide better grayscale information and spatial fidelity of reconstructed images compared to simple frame averaging, with up to a 3-fold improvement in SSIM.

PHOTONICS (2023)

Article Chemistry, Multidisciplinary

Room-Temperature Exceptional-Point-Driven Polariton Lasing from Perovskite Metasurface

M. A. Masharin, A. K. Samusev, A. A. Bogdanov, I. V. Iorsh, H. V. Demir, S. V. Makarov

Summary: Excitons in lead bromide perovskites have a high binding energy and high oscillator strength, which enables strong light-matter coupling in perovskite-based cavities at the nanoscale. In this study, a perovskite metasurface fabricated with nanoimprint lithography is used to demonstrate room-temperature polariton lasing. The observed lasing emission has a high directivity and compatibility with various planar photonic platforms.

ADVANCED FUNCTIONAL MATERIALS (2023)

Review Chemistry, Multidisciplinary

Lest We Forget-The Importance of Heteroatom Interactions in Heterocyclic Conjugated Systems, from Synthetic Metals to Organic Semiconductors

Joseph Cameron, Alexander L. Kanibolotsky, Peter J. Skabara

Summary: The concept of heteroatom interactions in synthetic metals has been applied in recent organic semiconductor materials, leading to significant advancements.

ADVANCED MATERIALS (2023)

Article Chemistry, Physical

Thermodynamic Silver Doping of Core/Shell Colloidal Quantum Wells Imparted with Paramagnetic Properties Emitting at Near-Infrared

Farzan Shabani, Muhammad Ahmad, Satish Kumar, Savas Delikanli, Furkan Isik, Arinjoy Bhattacharya, Athos Petrou, Hilmi Volkan Demir

Summary: Two-dimensional (2D) core/shell nanoplatelets (NPLs) synthesized via the hot-injection method provide excellent thermal and chemical stability for high-temperature doping. A thermodynamic approach toward silver doping of these NPLs is proposed and demonstrated. The distribution of silver ions in the lattice of the NPLs directly affects the recombination dynamics and enables fine-tuning of the near-infrared emission.

CHEMISTRY OF MATERIALS (2023)

Article Chemistry, Physical

Near-Infrared Emission from CdSe-Based Nanoplatelets Induced by Ytterbium Doping

Merve Izmir, Emek G. Durmusoglu, Manoj Sharma, Farzan Shabani, Furkan Isik, Savas Delikanli, Vijay Kumar Sharma, Hilmi Volkan Demir

Summary: In this study, ytterbium (Yb) was successfully doped into cadmium selenide (CdSe) nanoplatelets (NPLs) using a modified seeded-growth method. The Yb-doped NPLs exhibited additional near-infrared (NIR) emission apart from their excitonic emission. By optimizing the dopant concentration, an impressive photoluminescence quantum yield (PL QY) of approximately 55% was achieved. Detailed elemental and optical characterizations were performed to understand the emerging photophysical properties of these Yb-doped NPLs. These lanthanide-doped CdSe NPLs emitting in the NIR range could find applications in next-generation bioimaging, night vision, and photodetection.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Optics

Ultrahigh Quality Microlasers from Controlled Self-Assembly of Ultrathin Colloidal Semiconductor Quantum Wells

Yi Tian Thung, Rui Duan, Emek G. Durmusoglu, Yichen He, Lian Xiao, Calvin Xiu Xian Lee, Wen Siang Lew, Lin Zhang, Hilmi Volkan Demir, Handong Sun

Summary: Colloidal quantum wells (CQWs) are a promising gain material for optical feedback due to their unique excitonic features from 1D confinement, but current integration methods result in low laser quality. To address this, a liquid-interface kinetically driven self-assembly method is proposed to coat ultrathin CQWs onto silica microsphere cavities, achieving high-quality microlasers with a Q-factor of 13,000 at room temperature. Stable single-mode lasing output is demonstrated through evanescent field coupling in a 2D-3D microcavity configuration, highlighting the potential for future miniaturized colloidal optoelectronic and photonic applications.

LASER & PHOTONICS REVIEWS (2023)

Article Optics

Simultaneous Dual-Color Amplified Spontaneous Emission and Lasing from Colloidal Quantum Well Gain Media in their Own Layered Waveguide and Cavity

Ahmet Tarik Isik, Farzan Shabani, Furkan Isik, Satish Kumar, Savas Delikanli, Hilmi Volkan Demir

Summary: Micro/nanoscale semiconductor multicolor lasers have great potential for improved photonic circuits. This work proposes and demonstrates multicolor optical gain and lasing from colloidal quantum wells (CQWs) in an all-solution processed optical cavity. A layered architecture with a transparent low refractive index colloidal spacing layer is designed to suppress nonradiative energy transfer and enable simultaneous amplified spontaneous emission in two colors. This architecture is adapted to a whispering-gallery-mode cavity, resulting in dual-color multimode lasing at 569 and 648 nm.

LASER & PHOTONICS REVIEWS (2023)

Article Chemistry, Multidisciplinary

Highly-Directional, Highly-Efficient Solution-Processed Light-Emitting Diodes of All-Face-Down Oriented Colloidal Quantum Well Self-Assembly

Hamed Dehghanpour Baruj, Iklim Bozkaya, Betul Canimkurbey, Ahmet Tarik Isik, Farzan Shabani, Savas Delikanli, Sushant Shendre, Onur Erdem, Furkan Isik, Hilmi Volkan Demir

Summary: Solution-processed colloidal quantum well light-emitting diodes (CQW-LEDs) with a single all-face-down oriented self-assembled monolayer (SAM) film of CQWs exhibit improved external quantum efficiency and outcoupling efficiency. The record-high external quantum efficiency of 18.1% and other favorable performance metrics indicate the effectiveness of oriented self-assembly of CQWs in CQW-LEDs.

SMALL (2023)

Article Nanoscience & Nanotechnology

Ultrafast Control of the Optical Transition in Type-II Colloidal Quantum Wells

Junhong Yu, Emek Goksu Durmusoglu, Yimeng Wang, Manoj Sharma, Hilmi Volkan Demir, Cuong Dang

Summary: Manipulating optical transition in semiconductors at ultrashort timescales is crucial for photonic applications. The traditional methods include electrostatic gating via Stark effects or band-gap renormalizations. This study introduces an all-optical approach to engineer an indirect transition in CdSe/CdTe core-crown colloidal quantum wells, with tunable energy shift and dynamics. The findings suggest promising applications in optical switching networks.

ACS PHOTONICS (2023)

Review Chemistry, Physical

Optically detected magnetic resonance spectroscopic analyses on the role of magnetic ions in colloidal nanocrystals

Joanna Dehnel, Adi Harchol, Yahel Barak, Itay Meir, Faris Horani, Arthur Shapiro, Rotem Strassberg, Celso de Mello Donega, Hilmi Volkan Demir, Daniel R. Gamelin, Kusha Sharma, Efrat Lifshitz

Summary: Incorporating magnetic ions into semiconductor nanocrystals is a promising research field for manipulating spin-related properties. Various host materials and magnetic ions have been studied, and the impact of nanostructure engineering and ion selection in carrier-magnetic ion interactions is emphasized. The use of optically detected magnetic resonance spectroscopy provides valuable insights into the spin dynamics and physical parameters of the carrier-magnetic ion interactions.

JOURNAL OF CHEMICAL PHYSICS (2023)

Article Materials Science, Multidisciplinary

Understanding the suitable alloying conditions for highly efficient Cu- and Mn-doped Zn1-xCdxS/ZnS core-shell quantum dots

Manpreet Kaur, Ashma Sharma, Onur Erdem, Akshay Kumar, Hilmi Volkan Demir, Manoj Sharma

Summary: Doping of alloyed colloidal quantum dots (QDs) has gained attention for their tunable and Stokes-shifted emission. High-quality Cu and Mn-doped ZnxCd1-xS alloyed QDs were synthesized, and the addition of a ZnS shell significantly improved their quantum yield (QY).

OPTICAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

p Continuous roller transfer-printing and automated metrology of >75,000 micro-LED pixels in a single shot

Eleni Margariti, Gemma Quinn, Dimitars Jevtics, Benoit Guilhabert, Martin D. Dawson, Michael J. Strain

Summary: A continuous, single shot roller transfer printing process is introduced for large-scale hybrid integration of semiconductor devices. It demonstrates transfer of a 320 x 240 pixel micro-LED array, with sub-micron relative position accuracy, representing over 75,000 individual devices in one shot. The transfer printing process maintains array geometry, with pixel spatial location error less than 1 & mu;m deviation from the as-designed layout. An automated sub-micron precision metrology system using simple optical microscopy is developed to assess device populations and yield.

OPTICAL MATERIALS EXPRESS (2023)

Proceedings Paper Nanoscience & Nanotechnology

Foundry SiN as a platform for Heterogeneous Integration at Visible Wavelengths

Jack A. Smith, Zhibo Li, Saprtarsi Ghosh, Henry Francis, Gabriele Navickaite, Loyd J. McKnight, Rachel A. Oliver, Martin D. Dawson, Michael J. Strain

Summary: Silicon nitride (Si3N4) is a high-performance material platform for visible wavelength photonic integrated circuits, especially for heterogeneous/hybrid integration of complementary materials. This work characterizes the performance of Si3N4 from LIGENTEC as a base for hybrid integration.

2023 IEEE PHOTONICS SOCIETY SUMMER TOPICALS MEETING SERIES, SUM (2023)

Article Materials Science, Multidisciplinary

Translating efficient fluorescence into persistent room-temperature phosphorescence by doping bipolar fluorophores into polar polymer matrix

Mengjiao Dong, Liyun Liao, Chensheng Li, Yingxiao Mu, Yanping Huo, Zhong-Min Su, Fushun Liang

Summary: This study investigates the influence of the polarity of polymer matrices on persistent room-temperature phosphorescence (pRTP). It is discovered that intense phosphorescence emission can be achieved in highly polar matrices such as polyacrylic acid (PAA). The dipole-dipole interaction between the polar fluorophore and polar matrix is proposed to stabilize the excited state and facilitate the generation of efficient room-temperature phosphorescence emissions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

High spatial resolution X-ray scintillators based on a 2D copper(i) iodide hybrid

Han-Jiang Yang, Weijia Xiang, Xiangzhou Zhang, Jin-Yun Wang, Liang-Jin Xu, Zhong-Ning Chen

Summary: This article reports a 2D copper(I)-based cluster material for X-ray imaging, which exhibits ultra-high spatial resolution, high photoluminescence efficiency, and low detection limit. The material shows excellent linear response to X-ray dose rates and light output, and has the best spatial resolution among reported lead-free metal halide hybrids.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Review Materials Science, Multidisciplinary

Interlayer and intermolecular excitons in various donor-acceptor heterostructures: applications to excitonic devices

Taek Joon Kim, Sang-hun Lee, Dayeong Kwon, Jinsoo Joo

Summary: Donor-acceptor heterostructures using organic-inorganic halide perovskites, two-dimensional transition metal dichalcogenides, pi-conjugated organic small/macro molecules, and quantum dots are promising platforms for exciton-based photonics and optoelectronics. Hetero-interlayer excitons and hetero-intermolecular excitons formed through optical and/or electrical charge transfer in various heterostructures are important quasi-particles for light emission, detection, and harvesting systems.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Designing CMOS compatible efficient ohmic contacts to WSi2N4 via surface-engineered Mo2B monolayer electrodes

Liemao Cao, Xiaohui Deng, Zhen-kun Tang, Rui Tan, Yee Sin Ang

Summary: We investigate the interface properties between WSi2N4 and Mo2B, O-modified Mo2B, and OH-modified Mo2B nanosheets. We find that WSi2N4 and Mo2B form n-type Schottky contacts, while functionalizing Mo2B with O and OH leads to the formation of both n-type and p-type ohmic contacts with WSi2N4. Additionally, we demonstrate the emergence of quasi-ohmic contact with ultralow lateral Schottky barrier and zero vertical interfacial tunneling barriers in Mo2B(OH)2-contacted WSi2N4.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Soft nanocomposites of lead bromide perovskite and polyurethane prepared via coordination chemistry for highly flexible, stable, and quaternary metal alloy-printed light emitting diodes

Ga Eun Kim, Hae-Jin Kim, Heesuk Jung, Minwoo Park

Summary: This study presents a solution to the commercialization challenges of flexible LEDs based on MAPbBr(3) by incorporating polyurethane and an In-Ga-Zn-Sn liquid alloy. The designed devices showed high flexibility, efficiency, and durability, with improved electron injection and reduced defects, making them promising for next-generation displays.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Elucidating the effects of the sidechain substitution direction on the optoelectronic properties of isomeric diketopyrrolopyrrole-based conjugated polymers for near-infrared organic phototransistors

Tao Shen, Zeng Wu, Zhen Jiang, Dongsheng Yan, Yan Zhao, Yang Wang, Yunqi Liu

Summary: Sidechain engineering is an important molecular design strategy for tuning the solid-state packing and structural ordering of conjugated polymers. The effects of sidechain direction on the optoelectronic properties of polymers and device performance were systematically investigated in this study. The results demonstrate that tuning the sidechain substitution direction can effectively improve the molecular structure and light absorption properties of polymers, providing new insights for the rational design of functional polymers.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Phase-engineering compact and flexible CsPbBr3 microcrystal films for robust X-ray detection

Lotte Clinckemalie, Bapi Pradhan, Roel Vanden Brande, Heng Zhang, Jonathan Vandenwijngaerden, Rafikul Ali Saha, Giacomo Romolini, Li Sun, Dirk Vandenbroucke, Mischa Bonn, Hai I. Wang, Elke Debroye

Summary: In this study, a facile strategy using a non-conductive polymer was proposed to fabricate stable, pinhole-free thick films. The effect of introducing a second phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport was investigated. The dual phase devices exhibited improved stability and more effective operation at higher voltages in X-ray detection.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Photoluminescence and structural phase transition relationship in Er-doped BaTiO3 model ferroelectric system

Jingye Zou, Shenglan Hao, Pascale Gemeiner, Nicolas Guiblin, Omar Ibder, Brahim Dkhil, Charles Paillard

Summary: When rare-earth ions are embedded in a ferroelectric material, their photoluminescence can serve as an all-optical probe for temperature, electric field, and mechanical stimulus. However, the impact of ferroelectric phase transitions on photoluminescence is not well understood. In this study, we demonstrate changes in the photoluminescence of green emission bands during critical ferroelectric transitions in an Er-doped BaTiO3 material. We also find that the intensity ratio and wavelength position difference of sub-peaks provide information on the phase transitions.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Resonant tunneling induced large magnetoresistance in vertical van der Waals magnetic tunneling junctions based on type-II spin-gapless semiconductor VSi2P4

Jiangchao Han, Daming Zhou, Wei Yang, Chen Lv, Xinhe Wang, Guodong Wei, Weisheng Zhao, Xiaoyang Lin, Shengbo Sang

Summary: Rare type-II spin-gapless semiconductors (SGSs) have attracted increasing attention due to their unique spin properties. In this study, the interface contacts and spin transport properties of different devices composed of VSi2P4 ferromagnetic layers were investigated. The results show that VSi2P4 is a promising material for designing vertical van der Waals heterostructures with a giant tunnel magnetoresistance (TMR) in spintronic applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Design of Cr-Ba-doped γ-Ga2O3 persistent luminescence nanoparticles for ratiometric temperature sensing and encryption information transfer

Tianqi Zhao, Renagul Abdurahman, Qianting Yang, Ruxiangul Aiwaili, Xue-Bo Yin

Summary: In this study, we designed and prepared Cr and Ba-doped gamma-Ga2O3 nanoparticles to achieve near-infrared emission and enhance the emission intensity. The emission mechanism was proposed based on the trap depth, band gap, and energy levels of Cr ions. The ratiometric temperature sensing and encryption information transfer demonstrated the potential applications of this technology.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Spin-gapless semiconducting characteristics and related band topology of quaternary Heusler alloy CoFeMnSn

Shuvankar Gupta, Jyotirmoy Sau, Manoranjan Kumar, Chandan Mazumdar

Summary: In this study, a new spin-gapless semiconductor material CoFeMnSn is reported, and its stable structure and spin-polarized band structure are determined through experimental realization and theoretical calculations. The compound exhibits a high ferromagnetic transition temperature, making it excellent for room temperature applications. The nearly temperature-independent resistivity, conductivity, and carrier concentration of the compound, adherence to the Slater-Pauling rule, and the high intrinsic anomalous Hall conductivity achieved through hole doping further confirm its spin-gapless semiconductor nature. Additionally, the compound's SGS and topological properties make it suitable for spintronics and magneto-electronics devices.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Two-dimensional metal-organic nanosheets composed of single-molecule magnets: structural modulation and enhanced magnetism utilizing the steric hindrance effect

Ikumi Aratani, Yoji Horii, Yoshinori Kotani, Hitoshi Osawa, Hajime Tanida, Toshiaki Ina, Takeshi Watanabe, Yohko F. Yano, Akane Mizoguchi, Daisuke Takajo, Takashi Kajiwara

Summary: In this study, two-dimensional arrays of single-molecule magnets (SMMs) based on metal-organic frameworks (MOFs) were systematically modified through Langmuir-Blodgett methods and chemical modifications. The introduction of bulky alkoxide groups induced structural changes and perpendicular magnetic anisotropy. This research provides a promising strategy for the construction of high-density magnetic memory devices using molecular spintronics.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Eulytite-type Ba3Yb(PO4)3:Tm/Er/Ho as a high sensitivity optical thermometer over a broad temperature range

Zonghao Lei, Houhe Dong, Lijie Sun, Bing Teng, Yanfei Zou, Degao Zhong

Summary: Researchers have successfully developed four different up-conversion phosphors based on the Eulytite-type host Ba3Yb(PO4)(3). The optical temperature sensing properties of these phosphors were thoroughly investigated, and it was found that Ba3Yb(PO4)(3):Tm/Er/Ho showed potential for optical temperature measurement applications.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Understanding trends in conductivity in four isostructural multifunctional crystals of Se substituted bis-dithiazolyl radicals

C. Roncero-Barrero, M. A. Carvajal, J. Ribas-Arino, I. de P. R. Moreira, M. Deumal

Summary: This study computationally investigates the conductivity of four isostructural compounds with different Se contents, and reveals the parameters that define their conductivity in stable organic radical materials. The results provide insights into the influence of Se content on the conductivity and highlight the importance of considering multiple parameters in understanding the trends in conductivity.

JOURNAL OF MATERIALS CHEMISTRY C (2024)

Article Materials Science, Multidisciplinary

Interplay between oxygen vacancies and cation ordering in the NiFe2O4 spinel ferrite

Remi Arras, Kedar Sharma, Lionel Calmels

Summary: In this study, we investigated the interplay between structural defects in NiFe2O4, showing that the complex formed by a Ni-Oh/Fe-Td-cation swap and a neutral oxygen vacancy is more stable than these two isolated defects, and significantly reduces the width of the minority-spin band gap.

JOURNAL OF MATERIALS CHEMISTRY C (2024)