4.7 Article

A multiple-realizations chance-constrained model for optimizing nutrient removal in constructed wetlands

Journal

WATER RESOURCES RESEARCH
Volume 44, Issue 4, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007WR006126

Keywords

-

Ask authors/readers for more resources

High nutrient loads in surface waters are a cause of hypoxia in coastal ecosystems. Constructed wetlands offer a means of nutrient removal, but their design is complicated by environmental fluctuations. In the present work, a chance-constrained model is developed on the basis of satisfying performance constraints for a subset of the period of hydrologic and meteorological record. The model incorporates a nonsteady state wetland model and is used to determine the most cost-efficient wetland design given the nutrient removal requirements. Three candidate wetlands are considered. For two of them a comparison is made between operating the wetlands individually versus operating them concurrently. Results show that the factors limiting wetland performance are low flow availability and low inflow nutrient concentrations. Further, for the case considered, a two-wetland design is found to be more cost-effective than a single-wetland design. On average, wetlands have huge potential for nutrient removal but have a higher risk of failure than conventional treatment and could, under unfavorable conditions, be more expensive.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available