4.8 Article

Assessment of the application of bioanalytical tools as surrogate measure of chemical contaminants in recycled water

Journal

WATER RESEARCH
Volume 49, Issue -, Pages 300-315

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2013.11.030

Keywords

Bioassay; In vitro; Micropollutant; Water quality; Water reclamation plant; Water recycling

Funding

  1. National Water Commission (NWC) of Australia
  2. Water Quality Research Australia (WQRA)
  3. ACTEW/Ecowise, Melbourne Water, Urban Water Security Research Alliance (UWSRA)
  4. SA Water, Sydney Water, United Water, Water Corporation
  5. Western Australian Department of Water

Ask authors/readers for more resources

The growing use of recycled water in large urban centres requires comprehensive public health risk assessment and management, an important aspect of which is the assessment and management of residual trace chemical substances. Bioanalytical methods such as in vitro bioassays may be ideal screening tools that can detect a wide range of contaminants based on their biological effect. In this study, we applied thirteen in vitro assays selected explicitly for their ability to detect molecular and cellular effects relevant to potential chemical exposure via drinking water as a means of screening for chemical contaminants from recycled water at 9 Australian water reclamation plants, in parallel to more targeted direct chemical analysis of 39 priority compounds. The selected assays provided measures of primary non-specific (cytotoxicity to various cell types), specific (inhibition of acetylcholinesterase and endocrine receptor-mediated effects) and reactive toxicity (mutagenicity and genotoxicity), as well as markers of adaptive stress response (modulation of cytokine production) and xenobiotic metabolism (liver enzyme induction). Chemical and bioassay analyses were in agreement and complementary to each other: the results show that source water (treated wastewater) contained high levels of biologically active compounds, with positive results in almost all bioassays. The quality of the product water (reclaimed water) was only marginally better after ultrafiltration or dissolved air floatation/ filtration, but greatly improved after reverse osmosis often reducing biological activity to below detection limit. The bioassays were able to detect activity at concentrations below current chemical method detection limits and provided a sum measure of all biologically active compounds for that bioassay, thus providing an additional degree of confidence in water quality. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Environmental Sciences

Late Holocene climate anomaly concurrent with fire activity and ecosystem shifts in the eastern Australian Highlands

Zoe A. Thomas, Scott Mooney, Haidee Cadd, Andy Baker, Chris Turney, Larissa Schneider, Alan Hogg, Simon Haberle, Ken Green, Laura S. Weyrich, Vilma Perez, Nicole E. Moore, Atun Zawadzki, Sarah J. Kelloway, Stuart J. Khan

Summary: The study reveals a warming trend in the Australian alpine region over the past 3500 years, with a pronounced climate anomaly between 1000 and 1600 cal yrs. BP. Vegetation shifts occurred during this warm period, characterized by a decline in alpine species and an increase in open woodland taxa, along with an increase in regional fire activity.

SCIENCE OF THE TOTAL ENVIRONMENT (2022)

Article Environmental Sciences

Analysis of the literature shows a remarkably consistent relationship between size and abundance of microplastics across different environmental matrices

Frederic D. L. Leusch, Hsuan-Cheng Lu, Kushani Perera, Peta A. Neale, Shima Ziajahromi

Summary: Microplastics come in various shapes, polymer types, and sizes. The lack of a standardized approach to analyze and quantify microplastics has led to significant disparities in reported data, making it difficult to compare microplastic abundance between studies. This study introduces a mathematical approach that allows for meaningful comparisons of microplastics irrespective of size classifications. By validating the method with two datasets and re-analyzing 127 publications, a negative linear relationship between microplastic concentrations and sizes was found across different environmental matrices. This method enables researchers to compare microplastic concentrations and estimate abundance, providing a better understanding of the risks microplastics pose to organisms.

ENVIRONMENTAL POLLUTION (2023)

Article Environmental Sciences

Non-targeted proteomics reveals altered immune response in geographically distinct populations of green sea turtles (Chelonia mydas)

Stephanie Chaousis, Frederic D. L. Leusch, Colin J. Limpus, Amanda Nouwens, Liesbeth J. Weijs, Antonia Weltmeyer, Adrian Covaci, Jason P. van de Merwe

Summary: All seven species of sea turtle are facing increasing pressures from human activities that are impacting their health. Changes in blood proteins can indicate adverse health outcomes. This study examines the protein abundance in sea turtle plasma, compares protein expression between different populations, and investigates markers of contaminant exposure.

ENVIRONMENTAL RESEARCH (2023)

Article Environmental Sciences

Effect-Based Trigger Values Are Essential for the Uptake of Effect-Based Methods in Water Safety Planning

Peta A. Neale, Beate I. Escher, Milo L. De Baat, Jerome Enault, Frederic D. L. Leusch

Summary: Effect-based methods (EBMs) using in vitro bioassays and well plate-based in vivo assays are recommended for water quality monitoring. Effect-based trigger values (EBTs) have been introduced to differentiate between acceptable and unacceptable chemical water quality. These EBTs have been derived for both drinking water and surface water to protect human and ecological health.

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY (2023)

Article Engineering, Chemical

A novel single-scan printing approach for polyamide membranes by electrospray technique on polydopamine pre-coated substrate

Shiyang Huang, Jaleh Mansouri, James A. McDonald, Stuart J. Khan, Greg Leslie, Chuyang Y. Tang, Anthony G. Fane

Summary: This work proposes a new approach based on the electrospray technique to print polyamide thin-film composite membranes in a single scan. The study found that a substrate with a 4-hour polydopamine coating and a cone-jet spray at 2.5 cm spray distance showed the highest NaCl rejection at 98.1%.

JOURNAL OF MEMBRANE SCIENCE (2023)

Review Environmental Sciences

How effective are water treatment processes in removing toxic effects of micropollutants? A literature review of effect-based monitoring data

Jerome Enault, Jean-Francois Loret, Peta Neale, Milo De Baat, Beate Escher, Faten Belhadj, Stephan Kools, Geertje Pronk, Frederic Leusch

Summary: In the past decade, effect-based methods (EBMs) have gained increasing attention as a water quality monitoring tool. However, their practical use has been limited to research projects despite being recommended in guideline documents. This study reviews bioanalytical data on wastewater, drinking water, and reuse to identify knowledge gaps and priorities for action. The results highlight the need for more data on various biological effects and emphasize the importance of improving wastewater treatment to protect the environment.

JOURNAL OF WATER AND HEALTH (2023)

Article Engineering, Environmental

Investigating machine learning models to predict microbial activity during ozonation-biofiltration

Mahshid S. Z. Farzanehsa, Guido Carvajal, John Mieog, Stuart J. Khan

Summary: Continuous online monitoring is important for ensuring reliable water quality outcomes and effective removal of microbial substances during advanced wastewater treatment processes. However, most microbial indicators cannot be continuously monitored online. This study used a combined ozonation-biological media filtration process to reduce microbial indicator concentration and developed models for predicting microbial indicator concentration changes. Machine learning algorithms were applied to identify physico-chemical predictors and their associations with microbial indicator reduction. Support vector machines (SVM) with a Gaussian kernel classifier showed superior performance in microbial removal prediction. The study provides an efficient method to predict the effectiveness of the O-3/BMF process in removing microbial indicators based on commonly measured physico-chemical parameters.

ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY (2023)

Article Environmental Sciences

Wastewater-based monitoring reveals geospatial-temporal trends for antibiotic-resistant pathogens in a large urban community

Zillur Rahman, Weijia Liu, Lara Stapleton, Nikki Kenters, Dewa A. P. Rasmika Dewi, Ori Gudes, Helen Ziochos, Stuart J. Khan, Kaye Power, Mary-Louise McLaws, Torsten Thomas

Summary: Antimicrobial resistance (AMR) is a major global health threat, and current surveillance programs lack monitoring outside healthcare settings. Wastewater testing can provide a simple and continuous way to survey AMR trends in the community. By monitoring wastewater in Greater Sydney, Australia, we found regular presence of extended-spectrum beta-lactamases-producing Enterobacteriaceae (ESBL-E), and occasional presence of carbapenem-resistant Enterobacteriaceae (CRE), vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA). Our study highlights the potential of routine wastewater surveillance for understanding factors driving AMR distribution.

ENVIRONMENTAL POLLUTION (2023)

Article Engineering, Environmental

Application of Effect-Based Methods to Water Quality Monitoring: Answering Frequently Asked Questions by Water Quality Managers, Regulators, and Policy Makers

Peta A. . Neale, Beate I. Escher, Milo L. de Baat, Magali Dechesne, Milou M. L. Dingemans, Jerome Enault, Geertje J. Pronk, Patrick W. M. H. Smeets, Frederic D. L. Leusch

Summary: Effect-based methods (EBM) have the potential for water quality monitoring by detecting the mixture effects of chemicals, which cannot be addressed by chemical analysis alone. However, EBM has been primarily used in research rather than adopted by the water sector and regulators due to concerns about reliability and interpretation. This work aims to answer frequently asked questions about EBM and provide confidence to regulators and the water sector to encourage its application.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Engineering, Environmental

Novel Use of Cell Profiling Technology to Visualize Mitochondrial Responses of Humpback Whale Fibroblasts to Chemical Exposure

Md Hafiz All Hosen, Alex M. M. Sykes, Stephen A. A. Wood, Frederic D. L. Leusch, Deanne J. J. Whitworth, Susan M. Bengtson M. Nash

Summary: Cetaceans are at risk of accumulating environmental contaminants due to their longevity and high body fat. However, there is a lack of specific chemical effect data for these species. Recent advances in cetacean cell culture have allowed for the application of toxicological effect assessment approaches.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Review Environmental Sciences

Comparison of UV-Cl and UV-H2O2 advanced oxidation processes in the degradation of contaminants from water and wastewater: A review

Mahshid Farzanehsa, Liam C. C. Vaughan, Arash Zamyadi, Stuart J. J. Khan

Summary: Applications of advanced oxidation processes (AOPs) in water and wastewater treatment have been of great interest. UV-chlorine (UV-Cl) is emerging as a potentially cost-effective alternative to UV/hydrogen peroxide (UV-H2O2), showing efficient degradation of emerging chemicals in contaminated water. UV-H2O2 does not have superiority over UV-Cl in terms of disinfection by-product (DBP) formation. However, more investigation and pilot-scale studies are needed to establish UV-Cl as a reliable alternative to UV-H2O2.

WATER AND ENVIRONMENT JOURNAL (2023)

Article Engineering, Environmental

Microplastics and Tire Wear Particles in Urban Stormwater: Abundance, Characteristics, and Potential Mitigation Strategies

Shima Ziajahromi, Hsuan-Cheng Lu, Darren Drapper, Andy Hornbuckle, Frederic D. L. Leusch

Summary: Limited research has been conducted on microplastics (MPs) and tire wear particles (TWPs) in stormwater. This study provides information on the abundance of MPs and TWPs in Australia and offers strategies to mitigate MP pollution. The results indicate that stormwater serves as a pathway for MPs, including TWPs, to enter aquatic habitats. Constructed wetlands and microlitter capture devices can effectively reduce the transport of MPs from stormwater to receiving waterways.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Engineering, Environmental

Removal of hydrophilic, hydrophobic, and charged xenobiotic organic compounds from greywater using green wall media

H. M. Abd-ur-Rehman, V. Prodanovic, A. Deletic, S. J. Khan, J. A. McDonald, K. Zhang

Summary: Green walls provide a new and on-site method for treating and reusing greywater in urban areas. This study investigated the performance of different lightweight green wall media in removing twelve emerging contaminants from greywater. The results showed that coco coir and media mix columns achieved excellent removal of all contaminants through adsorption, with some hydrophilic contaminants also undergoing biodegradation. However, further research is needed to investigate the synergetic contribution of plants and media in removing these contaminants in long-term vegetated green wall systems.

WATER RESEARCH (2023)

Article Multidisciplinary Sciences

Wastewater-based epidemiology predicts COVID-19-induced weekly new hospital admissions in over 150 USA counties

Xuan Li, Huan Liu, Li Gao, Samendra P. Sherchan, Ting Zhou, Stuart J. Khan, Mark C. M. van Loosdrecht, Qilin Wang

Summary: Although the COVID-19 emergency status is easing, the pandemic still affects healthcare systems globally. The use of wastewater-based epidemiology has been shown to accurately predict COVID-19-induced hospital admissions, providing early warnings for healthcare systems. This study demonstrates the potential of wastewater-based epidemiology as an effective method for predicting disease occurrence.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Ligand Mediated, Spatially Confined Carbonization of Biomass Forming High-Performance Colloidal Carbon Dots

Dechao Chen, Muhammad Usman Zia, Fan Yang, Yuting Wang, Frederic D. L. Leusch, Nam-Trung Nguyen, Wei Zhang, Yongsheng Gao, Dongyuan Zhao, Colin L. L. Raston, Qin Li

Summary: A ligand-mediated, spatially-confined synthesis method is developed to produce high-quality carbon dots from crude bioresources. The choice of solvent plays a critical role in the formation and properties of the carbon dots. The ligand-carbon interactions and electron transfer result in the formation of uniform colloidal carbon dots with multiple emissions. These carbon dots can be easily dispersed in various solvents and fabricated into thin-film devices, making them suitable for optoelectronic applications.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Engineering, Environmental

Parabens and their metabolite in a marine benthic-dominated food web from the Beibu gulf, South China Sea: Occurrence, trophic transfer and health risk assessment

Rong-Gui Zhu, Chang-Gui Pan, Feng-Jiao Peng, Chao-Yang Zhou, Jun-Jie Hu, Kefu Yu

Summary: This comprehensive survey investigated the occurrence, bioaccumulation, and trophic magnification of parabens and their metabolite 4-HB in a marine food web. Results showed that parabens were the predominant pollutants in marine organisms, with significant bioaccumulation from sediments. The estimated trophic magnification factor indicated biomagnification for MeP and trophic dilution for 4-HB. Overall, the risks for humans consuming marine organisms were found to be low.

WATER RESEARCH (2024)

Article Engineering, Environmental

Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems

Andres F. Torres-Franco, Deborah Leroy-Freitas, Cristina Martinez-Fraile, Elisa Rodriguez, Pedro A. Garcia-Encina, Raul Munoz

Summary: Anaerobic and microalgae-based technologies have emerged as sustainable alternatives for municipal wastewater treatment. However, the presence of viruses in the treated wastewater is a major concern for reuse applications. This study assessed the ability of these technologies to reduce viruses during secondary wastewater treatment. The results showed that all technologies were effective in reducing the concentration of viruses, with microalgae-based treatment exhibiting the highest potential for reducing the disinfection requirements of treated wastewater.

WATER RESEARCH (2024)

Article Engineering, Environmental

Reconsidering mercury sources and exposure pathways to bivalves: Insights from mercury stable isotopes

Young Gwang Kim, Sae Yun Kwon, Spencer J. Washburn, Scott C. Brooks, Ji Won Yoon, Lucien Besnard

Summary: The study uses Hg isotope ratios to identify the sources and exposure pathways of mercury in bivalves, finding that dissolved Hg phases in the water column are the primary source and exposure pathway to bivalves. This provides new insights into using bivalves as bioindicators for sediment quality monitoring.

WATER RESEARCH (2024)

Article Engineering, Environmental

Cation exchange resins enhance anaerobic digestion of sewage sludge: Roles in sequential recovery of hydrogen and methane

Hui Geng, Ying Xu, Rui Liu, Dianhai Yang, Xiaohu Dai

Summary: This study investigates the effect of cation exchange resin (CER) on the sequential recovery of hydrogen and methane from anaerobic digestion (AD) and the corresponding mechanisms. The results show that CER can simultaneously enhance the production of hydrogen and methane by promoting the solubilisation, hydrolysis, and acidification of organic matter. Additionally, CER facilitates effective contact between bacteria and organic particulates and reduces the energy barrier for mass transfer during methane production. The study also reveals changes in the microbial community structure and metagenomics during the AD process.

WATER RESEARCH (2024)

Article Engineering, Environmental

Fertilizer recovery from source-separated urine by evaporation with a combined process of dehumidification and the addition of absorbent resin supplement

Xiaojing Lin, Zhan Jin, Shunfeng Jiang, Zhiquan Wang, Suqing Wu, Ke Bei, Min Zhao, Xiangyong Zheng

Summary: Dehumidification combined with addition of absorbent resin supplement (ARS) was used to achieve rapid evaporation of non-pretreated urine, resulting in high water evaporation efficiency and nutrient recovery.

WATER RESEARCH (2024)

Article Engineering, Environmental

Influences of hydrodynamics on microbial community assembly and organic carbon composition of resuspended sediments in shallow marginal seas

Yangli Che, Chaoran Lin, Shen Li, Jiao Liu, Longhai Zhu, Shilei Yu, Nan Wang, Haoshuai Li, Mutai Bao, Yang Zhou, Tonghao Si, Rui Bao

Summary: Hydrodynamic processes play a crucial role in the transmission of sediments, microbial assembly, and organic carbon redistribution in the ocean. Through experiments and analysis, we found that hydrodynamics shape the assembly of microbial communities and control the redistribution of different sourced organic carbon, thereby influencing microbial-mediated biogeochemical transformation.

WATER RESEARCH (2024)

Article Engineering, Environmental

A comprehensive evaluation of the temporal and spatial fouling characteristics of RO membranes in a full-scale seawater desalination plant

Chao Chen, Yu Yang, Nigel J. D. Graham, Zhenyu Li, Xingtao Yang, Zhining Wang, Nadia Farhat, Johannes S. Vrouwenvelder, Li -an Hou

Summary: The fouling of seawater reverse osmosis membranes is a persistent challenge in desalination. This study monitored the operational performance of a desalination plant for 7 years and the fouling development in different areas of membrane modules. The findings showed that operational performance declined over time and fouling mainly occurred at the feed side of the modules, with the highest microbial diversity. Keystone species like Chloroflexi and Planctomycetes played an important role in maintaining community structure and biofilm maturation. Polysaccharides, soluble microbial products, marine humic acid-like substances, and inorganic substances contributed to fouling. Overall, biofouling had a significant impact on membrane fouling after 7 years of operation.

WATER RESEARCH (2024)

Article Engineering, Environmental

Fluctuating redox conditions accelerate the electron storage and transfer in magnetite and production of dark hydroxyl radicals

Dan Li, Jieyi Sun, Yibo Fu, Wentao Hong, Heli Wang, Qian Yang, Junhong Wu, Sen Yang, Jianhui Xu, Yunfei Zhang, Yirong Deng, Yin Zhong, Ping'an Peng

Summary: Sulfidation-oxidation treatment of magnetite (Fe3O4) enhances the production of dark center dot OH, which can efficiently degrade dissolved organic matter (DOM) and accelerate carbon cycling.

WATER RESEARCH (2024)

Article Engineering, Environmental

Full-scale upgrade activated sludge to continuous-flow aerobic granular sludge: Implementing microaerobic-aerobic configuration with internal separators

Cheng Yu, Kaijun Wang, Kaiyuan Zhang, Ruiyang Liu, Pingping Zheng

Summary: This study implemented a microaerobic-aerobic configuration in a full-scale municipal wastewater treatment facility and investigated the effects on sludge characteristics, pollutant removal, microbial community, and granulation mechanisms. The results showed successful transition from flocculent-activated sludge to well-defined AGS after two months of operation. The primary pathways for pollutant removal were simultaneous nitrification, denitrification, and phosphorus removal. Moreover, the incorporation of internal separators induced shifts in the flow pattern, which promoted granulation.

WATER RESEARCH (2024)

Article Engineering, Environmental

Target analysis, occurrence and cytotoxicity of halogenated polyhydroxyphenols as emerging disinfection byproducts in drinking water

Zhe Zhang, Shaoyang Hu, Guangrong Sun, Wei Wang

Summary: Halogenated aromatic disinfection byproducts (DBPs), such as halogenated phenols, have garnered widespread attention due to their high toxicity and prevalence. This study reports on the analysis, occurrence, and cytotoxicity of a group of emerging halogenated aromatic DBPs, known as halogenated polyhydroxyphenols (HPPs), in drinking water.

WATER RESEARCH (2024)

Article Engineering, Environmental

A coupled model to improve river water quality prediction towards addressing non-stationarity and data limitation

Shengyue Chen, Jinliang Huang, Peng Wang, Xi Tang, Zhenyu Zhang

Summary: Accurate prediction of river water quality is crucial for sustainable water management. This study introduces wavelet analysis and transfer learning techniques to assist LSTM modeling, proposing a newly coupled modeling approach that improves short-term prediction of river water quality.

WATER RESEARCH (2024)

Article Engineering, Environmental

Deciphering anaerobic ethanol metabolic pathways shaped by operational modes

Bang Du, Xinmin Zhan, Piet N. L. Lens, Yifeng Zhang, Guangxue Wu

Summary: Efficient anaerobic digestion relies on the cooperation of different microorganisms with different metabolic pathways. This study investigated the effects of different operational modes and the addition of powdered activated carbon (PAC) on ethanol metabolic pathways. The results showed that the SBR mode and the presence of CO2 facilitated ethanol metabolism towards propionate production, while the CFR mode with extended solids retention time enriched Geobacter. Adjusting operational modes and PAC addition can modulate anaerobic ethanol metabolism and enrich Geobacter.

WATER RESEARCH (2024)

Article Engineering, Environmental

Unraveling the factors influencing CO2 emissions from hydroelectric reservoirs in karst and non-karst regions: A comparative analysis

Wanfa Wang, Si-Liang Li, Jun Zhong, Yuanbi Yi, Fujun Yue, Zenglei Han, Qixin Wu, Ding He, Cong-Qiang Liu

Summary: This study compares the carbon biogeochemical processes in karst and non-karst regions within large thermal stratified river-reservoir systems. The results demonstrate that karst reservoirs have a reduced potential for carbon emissions and highlight the importance of considering geologic settings to improve accuracy in regional and global CO2 emission estimates.

WATER RESEARCH (2024)

Article Engineering, Environmental

Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River

Chunxia Jiang, Zelong Zhao, Dong Zhu, Xiong Pan, Yuyi Yang

Summary: This study analyzed the occurrence and distribution of antibiotic resistance genes (ARGs) in different environmental media of the Yangtze River using metagenomics. Core resistome dominated by multidrug resistance genes was found in all samples, while rare resistome dominated by various resistance genes was more prevalent in plasmids. Specific bacteria were identified as hosts for both core and rare resistomes, with high clinical concern ARGs found in the rare resistome. Particle-associated environment provided the most ideal conditions for resistome hosts. This study provided insights into the genetic locations of ARGs and the community assembly mechanisms of ARG hosts in freshwater environments.

WATER RESEARCH (2024)

Article Engineering, Environmental

Uncovering interactions among ternary electron donors of organic carbon source, thiosulfate and Fe0 in mixotrophic advanced denitrification: Proof of concept from simulated to authentic secondary effluent

Yu Zhang, Yongtao He, Linchun Jia, Lei Xu, Zheng Wang, Yueling He, Ling Xiong, Xumeng Lin, Hong Chen, Gang Xue

Summary: By synergizing organic carbon source, thiosulfate, and zero-valent iron, efficient mixotrophic denitrification of oligotrophic secondary effluent can be achieved. Thiosulfate plays a vital role in promoting TN removal efficiency, while corrosion of Fe0 releases OH- to neutralize H+ from thiosulfate-driven denitrification, creating a suitable environment for denitrification. The coordination of thiosulfate and Fe0 maintains the dominance of Thiobacillus for denitrification.

WATER RESEARCH (2024)