4.8 Article

Variability in phosphorus binding by aluminum in alum treated lakes explained by lake morphology and aluminum dose

Journal

WATER RESEARCH
Volume 46, Issue 15, Pages 4697-4704

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2012.06.005

Keywords

Aluminum sulfate; Sediment; Sorption; Phosphorus; Internal loading; Lakes

Funding

  1. USEPA [319]

Ask authors/readers for more resources

Sediment cores from six aluminum sulfate treated lakes in Minneapolis, MN were analyzed to determine the effectiveness of phosphorus (P) binding by aluminum (Al). Two of the study lakes are polymictic and the remaining four are dimictic. Above background concentrations of Al and Al-bound-P (P-Al) were detected in all six lakes at varying sediment depths. In contrast to previous studies, however, the binding relationship between Al and P was not consistent between lakes and substantial variation was also detected within each sediment profile. Average lake sediment Al:P-Al ratios ranged from 5.6 to 15 (molar) with higher ratios, or less efficient P binding, generally being detected in deep, dimictic lakes with high sediment Al content due to treatment. Multiple linear regression was used to explain the variability among average Al:P-Al ratios detected in each core and a lake morphometry index (Al Depth Index, core collection depth divided by the square root of lake area) along with Al dose described most of the variation (92%). Even though P bound to the added Al appears to be permanently removed from the internal P cycle in each lake (as evidenced by burial with new sediment), the differences in binding efficiency may indicate lower P inactivation, on a per unit Al basis, when elevated amounts of Al are added to the sediment, especially in deeper areas of lakes where sediment focusing may cause elevated Al accumulation to occur. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available