4.8 Article

Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater

Journal

WATER RESEARCH
Volume 46, Issue 3, Pages 789-798

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2011.11.049

Keywords

Phenolic compounds; Photocatalysis; TiO2; Activated carbon; Quantum yields

Funding

  1. Israeli Ministry of Science and Technology [3-1054]

Ask authors/readers for more resources

The photocatalytic degradation of two phenolic compounds, p-coumaric acid and caffeic acid, was performed with a suspended mixture of TiO2 and powdered activated carbon (PAC) (at pH = 3.4 and 8). Adsorption, direct photolysis and photocatalytic degradation were studied under different pH and UV light sources (sunlight vs. 365 nm UV lamps). The potential for reusing this catalyst mixture in sequential photocatalytic runs was examined as well. Quantum yields for the direct photolysis of caffeic acid under solar and artificial 365 nm light were calculated (for the first time) as 0.005 and 0.011, respectively. A higher removal rate of contaminants by either adsorption or photocatalysis was obtained at a low pH (pH 4). Furthermore, the addition of PAC increased the removal efficiency of the phenolic compounds. Fast removal of the pollutants from the solution over three sequential runs was achieved only when both TiO2 and PAC were present. This suggests that at medium phenolic concentrations, the presence of PAC as a co-sorbent reduces surface poisoning of the TiO2 catalyst and hence improves photocatalysis degradation of phenolic pollutants. The adsorption equilibrium of caffeic acid or p-coumaric acid on TiO2, PAC and the combined mixture of TiO2 and PAC follows the Langmuir isotherm model. Experiments with PAC TiO2 mixture and olive mill wastewater (anaerobically treated and diluted by a factor of 10) showed higher removal of polyphenols than of chemical oxygen demand (COD). 87% removal of total polyphenols, compared to 58% of COD, was achieved after 24 h of exposure to 365 nm irradiation (7.6 W/m(2)) in the presence of a suspended mixture of TiO2 and PAC, indicating self-selectivity of polyphenols. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available