4.7 Article

Microstructure and tribological properties of CrN and CrSiCN coatings

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 205, Issue 1, Pages 182-188

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2010.06.033

Keywords

CrN; CrSiCN; Microstructure; Wear; Erosion

Ask authors/readers for more resources

Three CrN based coatings were deposited on 17-4PH precipitation hardening stainless steel substrate using plasma enhanced magnetron sputtering (PEMS) technique. The three coatings evaluated in this study assumed the nominal compositions of Cr0.68N0.32 (sample CrN), Cr0.55Si0.013C0.14N0.3 (sample CrSiCN-1), and Cr0.43Si0.034C0.25N0.29 (Sample CrSiCN-2). The microstructure, mechanical properties and wear and erosion resistance of the coatings were evaluated to examine the effect of Si and C additions to CrN. The results indicated that with the incorporation of Si and C, the microstructure transformed from hexagonal Cr2N (for CrN coating) to B1 structure containing crystalline Si3N4 (for CrSiCN-2). The initial addition of Si (1.3 at.%) and C resulted in increase of hardness (H), Young's modulus (E) and the ratio of H-3/E-2. With further increase in Si (3.4 at.%) and C, the hardness and Young's modulus decreased. The coefficient of friction was observed to decrease with the addition of Si and C, irrespective of microstructure changes. The combination of reduced coefficient of friction and microstructure modifications has resulted in improved wear resistance for sample CrSiCN-2 (with a wear rate similar to 60% lower than CrN). The erosion resistance test results showed brittle erosion characteristics for samples CrN and CrSiCN-1 where erosion rate increased with erodent impingement angle and reached the highest rate at 75 degrees and 90 degrees, respectively. CrSiCN-2 coating, while exhibiting higher erosion rate at low impingement angle, demonstrated reduced erosion rate at higher angle due to the ductile nature of the coating under erosion test condition. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Metallurgy & Metallurgical Engineering

Effects of Cr-Si Diffusion Barrier Layer on the Oxidation Resistance of NiCrAlY Coating System with Aluminized Top Layer

F. Gao, X. Huang, Q. Yang, R. Liu

OXIDATION OF METALS (2016)

Article Materials Science, Multidisciplinary

Corrosion behaviour of IN625 in superheated steam at 800°C

S. Bsat, X. Huang

CORROSION ENGINEERING SCIENCE AND TECHNOLOGY (2016)

Article Materials Science, Ceramics

Mechanical Properties of Plasma-Sprayed Mullite-Reinforced Titania-Bioglass Composite

Suzan Bsat, Xiao Huang

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY (2016)

Article Materials Science, Multidisciplinary

Effect of Pressures on the Corrosion Behaviours of Materials at 625A°C

W. Li, X. Huang, J. Li, O. T. Woo, R. Sanchez, C. D. Bibby

Article Metallurgy & Metallurgical Engineering

Effect of Water Density/Pressure on the Corrosion Behavior of 304 and 310 Stainless Steels

Rainier Garcia Sanchez, X. Huang, P. Liu

OXIDATION OF METALS (2018)

Article Metallurgy & Metallurgical Engineering

Oxidation Behaviour of Alloys 800H, 3033 and 304 in High-Temperature Supercritical Water

Suzan Bsat, Bingjie Xiao, Xiao Huang, Sami Penttila

OXIDATION OF METALS (2018)

Article Materials Science, Multidisciplinary

Application and anti-bacterial performance evaluation of liquid glass coating

Bingjie Xiao, Ayman Ibrahim, Xiao Huang, Rong Liu

INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY (2018)

Article Materials Science, Multidisciplinary

Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

Shengli Jiang, Xiao Huang, Zhang He, Andrew Buyers

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE (2018)

Article Materials Science, Multidisciplinary

Characterization of alloy 3033 after exposure to superheated steam at 800°C

Nick Tepylo, Xiao Huang

MATERIALS AT HIGH TEMPERATURES (2019)

Proceedings Paper Automation & Control Systems

ASSESSING THE FEASIBILITY OF MICRO-PLASMA TECHNOLOGY FOR ADDITIVE MANUFACTURING

Jason Nagy, Xiao Huang

PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 6 (2018)

Article Nuclear Science & Technology

Corrosion Behaviour of Bare and NiCrAlY Coated Alloy 214 in Supercritical Water at 700 °C

Suzan Bsat, Xiao Huang, Sami Penttila

JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE (2018)

Article Nuclear Science & Technology

Microstructure Study of NiCrAlY and FeCrAlY Exposed to Superheated Steam at 800 °C

Alberto Saez-Maderuelo, Michael McTaggart, Xiao Huang, Cesar Maffiotte

JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE (2018)

Article Nuclear Science & Technology

Characterization of Alloy 214 After Exposure to Superheated Steam at 800 °C

Nick Tepylo, Rainier Garcia Sanchez, Xiao Huang

JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE (2018)

Article Materials Science, Multidisciplinary

Nano-Hydroxyapatite and TiO2 Bioactivated Polymer for Implant Applications

Suzan Bsat, Jennifer McTaggart, Xiao Huang

ADVANCED ENGINEERING MATERIALS (2017)

Proceedings Paper Energy & Fuels

Effect of Steam Pressure on the Oxidation Behaviour of Alloy 625

Shengli Jiang, Xiao Huang, Wenjing Li, Pei Liu

ENERGY MATERIALS 2017 (2017)

Article Materials Science, Coatings & Films

Effect of micro-arc oxidation on antimicrobial properties and biocompatibility of biomedical Ti-xFe alloys

Yanchun Xie, Xiaodong Wang, Shenshen Cui, Jiali Hu, Yongcun Wei, Yi Lian, Anwu Xuan, Bin Yu, Erlin Zhang

Summary: In this study, Ti-xFe (x = 3,5,9 wt%) alloys were surface modified by micro-arc oxidation (MAO) to improve their antimicrobial properties and biocompatibility. The results showed that increasing the oxidation voltage greatly enhanced the roughness and hydrophilicity of Ti-xFe-MAO alloys. The Ti-xFe alloys micro-arc oxidized at 250 V and 300 V exhibited improved corrosion resistance and excellent antimicrobial and cytocompatibility properties, making them suitable for orthopedic implant materials.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Fabrication of ultra-low porosity plasma electrolytic oxidation coating on Ta-12W alloys and its formation mechanism

Yuting Hao, Zuoyan Ye, Lili Wang, Minheng Ye, Hui Dong, Chao Wang, Yunchen Du

Summary: This study focuses on the modification of PEO coatings on Ta-12W alloy using NH4F additive. The results show that ultra-low porosity coatings can be prepared by optimizing the NH4F content. The formation process of specific structures on the coating surface is discussed, and the effects of NH4F concentration and treatment duration on coating characteristics are investigated.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Pulsed laser cladding on IN718 alloy using pre-coated CrCoNi-TiC/SiC powders for enhancing wear resistance

Yuanzhuo Liu, Linjiang Chai, Tao Yang, Chaodan Hu, Chuanmei Wang, Guoqiang Xi

Summary: By employing a pulsed laser, laser cladding was performed on IN718 alloy pre-coated with CrCoNi-TiC/SiC powders and three defect-free coatings were successfully prepared. The addition of TiC and SiC powders generated fine carbides dispersed in the coatings and led to changes in grain and substructure morphologies, resulting in increased hardness and wear resistance.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Growth of Nb films on Cu for superconducting radio frequency cavities by direct current and high power impulse magnetron sputtering: A molecular dynamics and experimental study

M. Ghaemi, A. Lopez-Cazalilla, K. Sarakinos, G. J. Rosaz, C. P. A. Carlos, S. Leith, S. Calatroni, M. Himmerlich, F. Djurabekova

Summary: The use of high-power impulse magnetron sputtering can result in dense and uniform niobium films on all surfaces of superconducting rf cavities, as simulated and investigated in this study.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Electrophoretic coating of magnesium oxide on microarc-oxidized titanium and characterization of in vitro antibacterial activity and biocompatibility

Jiaheng Du, Xinli Fan, Dongqin Xiao, Wuxiang Wang, Yiran Yin, Zhong Li, Kui He, Yanfei Tan, Jiyuan Yan, Gangli Liu, Ke Duan

Summary: This study investigated the electrophoretic deposition (EPD) of magnesium oxide (MgO) coatings on micro-arc oxidized titanium (MAO-Ti) and evaluated their in vitro antibacterial properties and biocompatibility. The results showed that MgO coatings significantly reduced bacterial numbers and biofilm formation, while also demonstrating good cytocompatibility and induction of osteoblast mineralization.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Enhancing the fretting damage resistance of suspension plasma sprayed hydroxyapatite coating with Titania addition

Samiksha Moharana, Yuichi Otsuka, R. Gnanamoorthy

Summary: The addition of titania to HAp coatings improves their wear resistance and reduces damage to titanium implants caused by debris generation. This study evaluates the fretting wear resistance of titania-added HAp suspension plasma spray coating and finds that it exhibits reduced friction coefficient and increased wear resistance.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Potentiostatic preparation and in vitro characterization of functional hazenite conversion coatings on AZ31 magnesium alloy

Li-Ping Wu

Summary: The functional hazenite coating deposited on AZ31 Mg alloy showed improved roughness and hydrophilicity, enhanced biocompatibility, reduced degradation rate, and decreased susceptibility to stress corrosion cracking.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Long-lasting anti-bacterial face masks enabled by combining anti-bacterial materials and superhydrophobic coating

Ning Tian, Delei Xu, Jinfei Wei, Bucheng Li, Junping Zhang

Summary: This study reports the preparation of a superhydrophobic and anti-bacterial fabric for face masks. The fabric exhibits high superhydrophobicity and excellent moisture resistance, enabling functionality effectiveness in cold weather conditions. The fabric also demonstrates remarkable anti-bacterial activity against E. coli, attributed to the synergistic effect of superhydrophobicity and embedded ZnO nanoparticles. This superhydrophobic anti-bacterial fabric holds great potential for various practical applications in personal protective equipment, healthcare, and disease prevention.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Aluminide diffusion coatings for improving the pesting behavior of refractory metals

Katharina Beck, Anke S. Ulrich, Andreas K. Czerny, Emma M. H. White, Martin Heilmaier, Mathias C. Galetz

Summary: Refractory metal based alloys have great potential as structural materials for high-temperature applications due to their high melting points. However, they are prone to catastrophic oxidation at around 700 degrees C. This study investigated the effect of aluminium diffusion coatings on the oxidation resistance of pure molybdenum, niobium, tantalum, and tungsten. The results showed that the aluminization improved the oxidation behavior and decreased the oxide growth rate for molybdenum and tantalum.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Preparation and characterization of La-doped Y3Al5O12 as a potential protective coating material against CMAS corrosion

Wenwen Shuai, Haijun Dou, Zhichen Guan, Wei Qian, Zhibao Li, Yinqun Hua, Jie Cai

Summary: This study synthesized (Y1-xLax)3Al5O12 (x = 0, 0.1, 0.2, 0.3) materials by doping lanthanum ions, and found that the doped materials exhibited improved mechanical properties and thermal expansion coefficient, as well as enhanced resistance to CMAS corrosion. These materials have potential applications.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Microstructural, mechanical and corrosion characterization of (C-HA)SiCnws coating on AZ31 magnesium alloy surface

Xianglei Liu, Jiahui Ding, Wanbo Hou, Xinhao Shi, Tao Feng, Xiangyuan Meng, Shifeng Wen, Mingde Tong, Zhufeng Yue

Summary: A composite coating was developed to improve the adhesion, wear resistance, and corrosion resistance, which exhibited significant enhancements in these properties.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Mechanism study of composite co-deposited Cu/Co-Mo corrosion-resistant coating on 6061 Al alloy

Hongxuan Xing, Jidong Li, Xianwei Hu, Liang Tian, Renyun Zhang, Yiyong Wang

Summary: By depositing a Cu/Co-Mo corrosion-resistant plating layer on the surface of 6061 Al alloy, the bonding strength between the alloy and the plating layer can be improved and the corrosion resistance can be enhanced. The composite coating forms an obvious three-layer structure with Co-Mo coating exhibiting amorphous characteristics and Co3Mo phase composition. The composite coating improves the corrosion resistance and hardness of the substrate, effectively protecting the 6061 Al alloy.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

The impact-corrosion behavior of HVAF-sprayed monolayer and hierarchical Fe-based amorphous coatings

Fan Yang, Debin Wang, Tianrun Li, Baijun Yang, Suode Zhang, Jianqiang Wang

Summary: The impact-corrosion behavior of monolayer and hierarchical Fe-based amorphous coatings fabricated by HVAF was investigated in 3.5 wt% NaCl solution. The monolayer coating exhibits corrosion failure with increased impact energy, while the hierarchical coating shows improved resistance. However, at high impact energies, both coatings experience corrosion degradation.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Modified Ni-Al layer double hydroxides as nanoparticles for self-healing anti-corrosion composite coating

Shoaib Ahmad, Muddasir Nawaz, Solaiman Mohammad, R. A. Shakoor, Ramazan Kahraman, Talal Mohammed Al Tahtamouni

Summary: This research presents a novel self-healing anti-corrosion composite coating that demonstrates higher inhibition efficiency and self-healing effect, providing protection for metallic structures against corrosive environments.

SURFACE & COATINGS TECHNOLOGY (2024)

Article Materials Science, Coatings & Films

Effects of silicon and neodymium additions on microstructures and mechanical properties of CoCrNi medium entropy alloy films

Hui-Wen Peng, Chun-Hway Hsueh

Summary: A series of (CoCrNi)100-x-ySixNdy medium entropy alloy films with manipulated metalloid element, Si, and rare earth element, Nd, were synthesized using magnetron three-target co-sputtering. The films showed different structures and mechanical properties with varying Si and Nd contents. The optimized mechanical properties were observed in the film with Si0.61Nd5.14, attributed to precipitation strengthening and grain refinement.

SURFACE & COATINGS TECHNOLOGY (2024)