4.7 Article

Microstructure and apatite-forming ability of the MAO-treated porous titanium

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 202, Issue 17, Pages 4248-4256

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2008.03.020

Keywords

porous titanium; micro-arc oxidation; microstructure; bioactivity

Ask authors/readers for more resources

Porous titanium was treated by micro-arc oxidation (MAO) in the aqueous electrolytes containing 0.1 and 0.2 M NaOH. The microstructure (including morphology, phase component, element composition and chemical species) and in vitro apatite-forming ability of the oxidized films formed on the inner-pore walls of porous titanium were investigated. It is found that continuous thin films with pore sizes of 20-60 nm are formed in both electrolytes. The films consist of an amorphous TiO2 outmost layer, a coexisted intermediate layer of amorphous TiO2 and rutile, and a Ti2O3 bottom layer, and tightly bond to the titanium substrate without any cracks. In vitro bioactivity assessment shows that both MAO films possess high apatite-forming abilities. It is also found that, compared with the film formed in the 0.1 M NaOH-containing electrolyte, the film formed in the 0.2 M NaOH-containing electrolyte has a higher roughness and more nanopores which help shorten apatite induction time. It is expected the MAO-formed bioactive porous titanium will not only be beneficial to bone ingrowth into the porous structure, but also be beneficial to achieve a tough chemical bonding at the bone/implant interface. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available