4.5 Article

Electrochemical enhancement of LiFePO4 as a cathode material by incorporating Cu flakes for lithium ion rechargeable battery

Journal

SOLID STATE IONICS
Volume 231, Issue -, Pages 18-24

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ssi.2012.10.015

Keywords

Lithium ion batteries; Cathode; LiFePO4; Cu flake

Ask authors/readers for more resources

The demand for power sources for electric vehicles (EV) and hybrid electric vehicles (HEV) with high-specific energy has brought immense interest in LiFePO4 (LFP) as a cathode for lithium ion batteries. However, intrinsically poor conductivity of LFP has hindered the realization of its high theoretical capacity (170 mAh g(-1)). In order to improve the electric conductivity of LFP cathode, Cu flakes with very high surface area was incorporated in the cathode by ball milling Cu flakes. Uniformly dispersed Cu flakes subsequently transformed to CuO during the calcination process. The Cu incorporated LFP composite cathode showed a high capacity of 161 mAh g(-1), displayed excellent high rate and cyclic performance. The capacity loss was less than 15% at a discharge rate of 2C and less than 1% after 50 cycles at C/10 rate. The cathode composite was characterized using X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Micro-Raman, and specific surface area. Electrochemical properties were measured using electrochemical impedance spectroscopy (EIS), potentiostatic intermittent titration technique (PITT) and galvanostatic measurements. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available