4.6 Article

Microfluidic spinning of fibrous alginate carrier having highly enhanced drug loading capability and delayed release profile

Journal

RSC ADVANCES
Volume 5, Issue 20, Pages 15172-15181

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra11438h

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Korean Government (MEST) [2013046403]

Ask authors/readers for more resources

Natural polymer-based drug carriers have been developed for antimicrobial applications but several problems remain with their poor controllability of drug loading and degradation. We introduce a novel method to produce improved antibiotic alginate fiber with high drug entrapment properties and a delayed degradation profile. A microfluidic spinning system with a low-polarity isopropyl alcohol (IPA) sheath flow was used to dehydrate an alginate/ampicillin aqueous solution and to form densely packed fiber with enhanced drug loading efficiency. The amounts of ampicillin initially loaded in the IPA-fiber were much higher than in the conventional water-based fiber and they released a more prolonged profile. The fibers were characterized by analyzing the morphology, mass loss and structural properties. The fibers were also used for an in vivo infected wound healing study. The results showed that the IPA-based fibrous alginate drug carrier possesses superior properties for loading drugs and potentials for wound healing applications with easy management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available