4.7 Article

ACT: A leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 143, Issue -, Pages 112-121

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2013.12.006

Keywords

Sorghum; Wheat; Leaf; Surface roughness; BRDF; BRF; Reflectance; Conoscope; Azimuthal anisotropy; Optical properties; Goniometer; Physical model; Refractive index

Funding

  1. Programme National de Teledetection Spatiale
  2. Arvalis-Institut du Vegetal through Alexis Comar PhD grant

Ask authors/readers for more resources

Leaf reflectance of monocotyledons generally displays a strong azimuthal anisotropy due to the longitudinal orientation of the veins. The Cook and Torrance (CT) bidirectional reflectance distribution function model was adapted to account for this distinctive feature. The resulting ACT (Anisotropic Cook and Torrance) model is based on the decomposition of the roughness parameter into two perpendicular components. It is evaluated on sorghum (Sorghum halepense) and wheat (Triticum durum) leaf BRF (Bidirectional Reflectance Factor) measurements acquired using a conoscope system. Results show that the ACT model fits the measurements better than azimuthally isotropic surface models: the root mean square error computed over all the BRF measurements for both leaves decreases from approximate to 0.06 for the Lambertian model to approximate to 0.04 for the CT model and down to approximate to 0.03 for the ACT model. The adjusted value of the refraction index is plausible (n approximate to 1.32) for both leaves while the retrieved roughness values perpendicular to the veins (sorghum = 0.56; wheat = 0.46) is about two times larger than that parallel to the veins (sorghum = 0.27; wheat = 0.18). Nonetheless, the observed residual discrepancies between the ACT model simulations and the measurements may be explained mainly by the Lambertian assumption of the volume scattering. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available