4.7 Article

Evidence for cascade overlap and grain boundary enhanced amorphization in silicon carbide irradiated with Kr ions

Journal

ACTA MATERIALIA
Volume 99, Issue -, Pages 7-15

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2015.07.070

Keywords

Silicon carbide; High-resolution electron microscopy; Grain boundaries; Radiation; Interstitial starvation

Funding

  1. US Department of Energy Basic Energy Sciences [DE-FG02-08ER46493]
  2. NSF through the University of Wisconsin Materials Research Science and Engineering Center [DMR-1121288]
  3. DOE Office of Nuclear Energy [DE-AC02-06CH11357]

Ask authors/readers for more resources

Evolution of amorphous domains in silicon carbide with 1 MeV Kr2+ irradiation is investigated using high-resolution transmission electron microscopy and simulations. An unusual morphology of highly curved crystalline/amorphous boundaries is observed in the images, which is identified as a result of cascade overlap and reproduced by a coarse-grained model informed by atomistic simulations. Comparison of local amorphization fractions near grain boundaries and within grain interiors provides experimental evidence for the interstitial starvation mechanism in SiC for the first time. As a competing effect to defect sinks, interstitial starvation increases the rate of local amorphization near grain boundaries and reduces the radiation resistance of nanocrystalline silicon carbide. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Applied

Physics-Based Model for Nonuniform Thermionic Electron Emission from Polycrystalline Cathodes

Dongzheng Chen, Ryan Jacobs, John Petillo, Vasilios Vlahos, Kevin L. Jensen, Dane Morgan, John Booske

Summary: A physics-based model is developed to accurately predict the emitted current from thermionic cathodes, spanning from temperature-limited to full-space-charge-limited regions. The model incorporates the cathode surface grain orientation and facet-orientation-specific work-function values to construct a nonuniform emission model for commercial dispenser cathodes. The predicted emission curves show excellent agreement with experimental results, providing a method to predict thermionic emission and improve the understanding of the relationship between emission and cathode microstructure.

PHYSICAL REVIEW APPLIED (2022)

Article Materials Science, Multidisciplinary

Benchmark Tests of Atom Segmentation Deep Learning Models with a Consistent Dataset

Jingrui Wei, Ben Blaiszik, Aristana Scourtas, Dane Morgan, Paul M. Voyles

Summary: The information content of atomic-resolution STEM images can be summarized by a few parameters, with column position being the most significant. Neural networks have been used to automatically locate atomic columns in STEM images, resulting in numerous NN models and training datasets. In this study, a benchmark dataset of simulated and experimental STEM images was developed to evaluate the performance of recent NN models for atom location. The models showed high performance for images of varying quality and crystal lattices. However, they performed poorly for images outside the training data, such as interfaces with large difference in background intensity. The benchmark dataset and models are available through the Foundry service.

MICROSCOPY AND MICROANALYSIS (2023)

Article Chemistry, Multidisciplinary

Experimentally informed structure optimization of amorphous TiO2 films grown by atomic layer deposition

Jun Meng, Mehrdad Abbasi, Yutao Dong, Corey Carlos, Xudong Wang, Jinwoo Hwang, Dane Morgan

Summary: This study characterized the structural and electronic properties of a-TiO2 thin films grown on Si by ALD, revealing the medium-range ordering in the film and establishing a realistic atomic model. Additionally, an improved multi-objective optimization package, StructOpt, was provided for structure determination of complex materials.

NANOSCALE (2023)

Article Nanoscience & Nanotechnology

In situ observation of medium range ordering and crystallization of amorphous TiO2 ultrathin films grown by atomic layer deposition

Mehrdad Abbasi, Yutao Dong, Jun Meng, Dane Morgan, Xudong Wang, Jinwoo Hwang

Summary: The evolution of medium range ordering (MRO) and crystallization behavior of amorphous TiO2 films grown by atomic layer deposition were investigated using in situ four-dimensional scanning transmission electron microscopy. The degree of MRO increases with temperature and reaches the maximum when crystallization starts to occur. In addition, post-annealing only develops a small portion of MRO into crystal nuclei, while the remaining MRO regions undergo structural relaxation. Crystallographic defects within crystal phases were observed, which may affect the corrosion resistance of the film. Understanding and controlling MRO is important for optimizing ALD-grown amorphous films for future functional devices and renewable energy applications.

APL MATERIALS (2023)

Article Engineering, Electrical & Electronic

Investigating Thermionic Emission Properties of Polycrystalline Perovskite BaMoO3

Lin Lin, Ryan Jacobs, Dane Morgan, John Booske

Summary: Recent experiments on the perovskite oxide SrVO3 demonstrate the potential for achieving low work functions using surface dipoles on polar perovskites. Additional density functional theory calculations suggest that many other perovskites, including BaMoO3, may also exhibit low work function. In this study, the thermionic emission behavior of BaMoO3 was investigated, showing a temperature limited emission current density that increases and saturates with increasing voltage. The material exhibits an overall effective work function comparable to LaB6, but higher than the lowest work function predicted by DFT. The discrepancy is attributed to patch field effects caused by nanoscale features on individual surface facets. BaMoO3 also exhibits some instability at high temperatures, but shows comparable emission behavior to LaB6 at temperatures below 1200 degrees C, making it a potential vacuum electron source for applications such as electron microscopes and electron beam writers.

IEEE TRANSACTIONS ON ELECTRON DEVICES (2023)

Article Engineering, Electrical & Electronic

Physical Factors Governing the Shape of the Miram Curve Knee in Thermionic Emission

Dongzheng Chen, Ryan Jacobs, Dane Morgan, John Booske

Summary: In the study of thermionic electron emission, the shape of the Miram curve knee, which represents the transition between the exponential region and the saturated emission regions, plays a crucial role in evaluating the quality of thermionic vacuum cathodes. This research provides a comprehensive understanding of the physical factors, including the space charge effect and the patch field effect, that determine the shape of the knee. By using a model system with a periodic, equal-width striped work function distribution, the study illustrates how these physical effects restrict the emission current density near the Miram curve knee. The results identify three key physical parameters that significantly impact the shape of the Miram curve, providing new insights for the design of thermionic cathodes in vacuum electronic devices.

IEEE TRANSACTIONS ON ELECTRON DEVICES (2023)

Article Materials Science, Multidisciplinary

Atomistic simulations of He bubbles in Beryllium

Jianqi Xi, Yeqi Shi, Vitaly Pronskikh, Frederique Pellemoine, Dane Morgan, Izabela Szlufarska

Summary: Using atomistic simulations, we investigated the behavior of helium bubbles in beryllium, focusing on their shape, stability, and diffusivity. We found that helium bubbles become unstable and change shape through plastic deformation when the helium-vacancy ratio exceeds 1.25. The dominant diffusion mechanism of helium bubbles changes from surface diffusion to volume diffusion at around 900 K. The results provide valuable insights into the microstructural evolution and properties of irradiated materials.

JOURNAL OF NUCLEAR MATERIALS (2023)

Article Multidisciplinary Sciences

Substantial lifetime enhancement for Si-based photoanodes enabled by amorphous TiO2 coating with improved stoichiometry

Yutao Dong, Mehrdad Abbasi, Jun Meng, Lazarus German, Corey Carlos, Jun Li, Ziyi Zhang, Dane Morgan, Jinwoo Hwang, Xudong Wang

Summary: Amorphous titanium dioxide (TiO2) film coating by atomic layer deposition (ALD) is a promising strategy to extend the photoelectrode lifetime for solar fuel generation. In this work, it is revealed that residual chlorine (Cl) ligands are detrimental to the silicon (Si) photoanode lifetime. Post-ALD in-situ water treatment effectively improves the film stoichiometry and preserves the amorphous phase, leading to a substantially improved lifetime for the protected Si photoanode.

NATURE COMMUNICATIONS (2023)

Article Multidisciplinary Sciences

Materials swelling revealed through automated semantic segmentation of cavities in electron microscopy images

Ryan Jacobs, Priyam Patki, Matthew J. Lynch, Steven Chen, Dane Morgan, Kevin G. Field

Summary: Accurate quantification of nanoscale cavities in irradiated alloys is achieved using the Mask R-CNN model, which provides insights into alloy performance and swelling metrics. The model demonstrates good performance in terms of statistical and materials property-centric evaluations, enabling accurate assessments of swelling in alloys.

SCIENTIFIC REPORTS (2023)

Review Physics, Applied

Work Function: Fundamentals, Measurement, Calculation, Engineering, and Applications

Lin Lin, Ryan Jacobs, Tianyu Ma, Dongzheng Chen, John Booske, Dane Morgan

Summary: In this review, the authors define different aspects of the work function and discuss the role of electric fields in work-function measurement and interpretation. They review standard experimental approaches and computational tools for measuring and predicting work function, and explore the influence of materials chemistry and structure on work-function trends. The authors also discuss the role of work function in various applications and provide guidance for engineering work-function values.

PHYSICAL REVIEW APPLIED (2023)

Article Materials Science, Multidisciplinary

Automated analysis of grain morphology in TEM images using convolutional neural network with CHAC algorithm

Xinyuan Xu, Zefeng Yu, Wei-Ying Chen, Aiping Chen, Arthur Motta, Xing Wang

Summary: This study presents an automated approach for characterizing grain morphology in TEM images recorded during ion irradiation. By combining a machine learning model and a computer vision algorithm, comparable results to human analysis can be achieved with significantly reduced analysis time. Researchers can train their own models following the procedures described in this study to automate grain morphology analysis of their own TEM images.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Energy & Fuels

Modular dimerization of organic radicals for stable and dense flow battery catholyte

Xiu-Liang Lv, Patrick T. Sullivan, Wenjie Li, Hui-Chun Fu, Ryan Jacobs, Chih-Jung Chen, Dane Morgan, Song Jin, Dawei Feng

Summary: This study successfully synthesized an ionic liquid-mimicking catholyte for aqueous organic redox flow batteries (AORFBs) that demonstrated high performance in terms of stability, power, and energy density. The optimized catholyte showed robust cycling stability, high power density, and high energy density, paving the way for low-cost and scalable AORFBs.

NATURE ENERGY (2023)

Article Chemistry, Multidisciplinary

Strong Room-Temperature Ferromagnetism in Ultrathin NiOOH Nanosheets through Surfactant Manipulation

Ziyi Zhang, Maciej P. Polak, Corey Carlos, Yutao Dong, Dane Morgan, Xudong Wang

Summary: Two-dimensional ferromagnetic materials with strong room-temperature ferromagnetism have been synthesized using an ionic layer epitaxy strategy. The ferromagnetic strength of the NiOOH nanosheets can be controlled by adjusting the surfactant monolayer density and annealing process, offering a promising pathway for achieving strong ferromagnetism in two-dimensional materials for spintronic applications.

ACS NANO (2023)

Article Materials Science, Multidisciplinary

Thermal conductivity degradation due to radiation-induced amorphization in U3Si2: A pilot study

Shipeng Shu, Yinbin Miao, Bei Ye, Kun Mo, Laura Jamison, Sumit Bhattacharya, Aaron Oaks, Abdellatif M. Yacout, Jason Harp, L. Amulya Nimmagadda, Sanjiv Sinha

Summary: This study investigates the thermal conductivity of U3Si2 that has been amorphized by ion irradiation. The results show that the thermal conductivity of amorphous U3Si2 is significantly lower than that of crystalline U3Si2, which is consistent with previous research findings.

JOURNAL OF NUCLEAR MATERIALS (2023)

Article Chemistry, Multidisciplinary

Performance and limitations of deep learning semantic segmentation of multiple defects in transmission electron micrographs

Ryan Jacobs, Mingren Shen, Yuhan Liu, Wei Hao, Xiaoshan Li, Ruoyu He, Jacob R. C. Greaves, Donglin Wang, Zeming Xie, Zitong Huang, Chao Wang, Kevin G. Field, Dane Morgan

Summary: In this study, a deep learning model was used for quantitative analysis of multiple defect types in TEM images of irradiated FeCrAl alloys. The model's performance and limitations were evaluated, and useful evaluation tests were provided to understand its applicability. The model accurately predicted irradiation-induced material hardening and efforts are being made to develop an easy-to-use defect detection tool.

CELL REPORTS PHYSICAL SCIENCE (2022)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)