4.6 Article

Characterization of a Clp Protease Gene Regulator and the Reaeration Response in Mycobacterium tuberculosis

Journal

PLOS ONE
Volume 5, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0011622

Keywords

-

Funding

  1. Paul G. Allen Family Foundation [8999]
  2. Akibene Foundation

Ask authors/readers for more resources

Mycobacterium tuberculosis (MTB) enters a non-replicating state when exposed to low oxygen tension, a condition the bacillus encounters in granulomas during infection. Determining how mycobacteria enter and maintain this state is a major focus of research. However, from a public health standpoint the importance of latent TB is its ability to reactivate. The mechanism by which mycobacteria return to a replicating state upon re-exposure to favorable conditions is not understood. In this study, we utilized reaeration from a defined hypoxia model to characterize the adaptive response of MTB following a return to favorable growth conditions. Global transcriptional analysis identified the similar to 100 gene Reaeration Response, induced relative to both log-phase and hypoxic MTB. This response includes chaperones and proteases, as well as the transcription factor Rv2745c, which we characterize as a Clp protease gene regulator (ClgR) orthologue. During reaeration, genes repressed during hypoxia are also upregulated in a wave of transcription that includes genes crucial to transcription, translation and oxidative phosphorylation and culminates in bacterial replication. In sum, this study defines a new transcriptional response of MTB with potential relevance to disease, and implicates ClgR as a regulator involved in resumption of replication following hypoxia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available