4.6 Article

The molecular recognition of phosphorylated proteins by designed polypeptides conjugated to a small molecule that binds phosphate

Journal

ORGANIC & BIOMOLECULAR CHEMISTRY
Volume 9, Issue 22, Pages 7697-7704

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ob06154b

Keywords

-

Funding

  1. Swedish Research Council

Ask authors/readers for more resources

The conjugation of polypeptides from a designed set to the small molecule ligand 3,5-bis[[bis(2-pyridylmethyl)amino]methyl]benzoic acid, which in the presence of Zn2+ ions binds inorganic phosphate, has been shown to provide a polypeptide conjugate that binds alpha-casein, a multiply phosphorylated protein, with a dissociation constant K-D of 17 nM. The measured affinity is more than three orders of magnitude higher than that of the small molecule ligand for phosphate and the binding of 500 nM of alpha-casein was not inhibited by 10 mM phosphate buffer, providing a 2000-fold excess of phosphate ion over protein. The selectivity for phosphoproteins was demonstrated by extraction of alpha-casein from solutions of various complexity, including milk and human serum spiked with alpha-casein. In addition to alpha-casein, beta-casein was also recognized but not ovoalbumin. Conjugation of a polypeptide to the zinc chelating ligand was therefore shown to give rise to dramatically increased affinity and also increased selectivity. A set of polypeptide conjugates is expected to be able to capture a large number of phosphorylated proteins, perhaps all, and in combination with electrophoresis or mass spectrometry become a powerful tool for the monitoring of phosphorylation levels. The presented binder can easily be attached to various types of surfaces; here demonstrated for the case of polystyrene particles. The example of phosphoproteins was selected since posttranslational phosphorylation is of fundamental importance in cell biology due to its role in signaling and therefore of great interest in drug development. The reported concept for binder development is, however, quite general and high-affinity binders can conveniently be developed for a variety of proteins including those with posttranslational modifications for which small molecule recognition elements are available.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Chemistry, Organic

Catalyst-free photo-induced aerobic radical synthesis of lactams from N-alkenyl trichloroacetamides in 2-methyltetrahydrofuran as the radical initiator under violet light

Faiza Diaba, Gisela Trenchs

Summary: The first violet light-mediated synthesis of gamma- and delta-lactams from N-alkenyl trichloroacetamides is reported in this paper. The reactions are conducted in tetrahydrofuran or 2-methyltetrahydrofuran as the sole solvent without catalysts or additives, under non-anhydrous conditions in an air atmosphere where the solvent serves as the radical initiator.

ORGANIC & BIOMOLECULAR CHEMISTRY (2024)

Article Chemistry, Organic

Synthesis of mixed phosphorotrithioates via thiol coupling with bis(diisopropylamino)chlorophosphine and sulphenyl chloride

Feroze Hussain, Sajjad Ahmed, Ashiq Hussain Padder, Qazi Naveed Ahmed

Summary: This study reports a novel and efficient one-pot synthesis method for mixed phosphorotrithioates, which does not require supplementary additives and shows broad applicability.

ORGANIC & BIOMOLECULAR CHEMISTRY (2024)

Article Chemistry, Organic

Catalyst-free assembly of a polyfunctionalized 1,2,4-triazole-fused N-heterocycle, 6-acylated pyrrolo[1,2-a][1,2,4]triazolo[5,1-c]pyrazine

Hyunjin Oh, Ikyon Kim

Summary: A new 1,2,4-triazole-pyrrolo[1,2-a]pyrazine hybrid system, 6-acylpyrrolo[1,2-a][1,2,4]triazolo[5,1-c]pyrazine, was synthesized using a catalyst-free method. This method involved sequential exposure of pyrrole-2-carbonitrile-derived substrates to DMF-DMA and acyl hydrazide, resulting in the formation of acylated pyrazine and 1,2,4-triazole rings, enabling the installation of various substituents at specific positions on the core skeleton.

ORGANIC & BIOMOLECULAR CHEMISTRY (2024)

Article Chemistry, Organic

Synthesis of sulfinamides via photocatalytic alkylation or arylation of sulfinylamine

Ming Yan, Si-fan Wang, Yong-po Zhang, Jin-zhong Zhao, Zhuo Tang, Guang-xun Li

Summary: Here we developed an efficient photocatalytic approach for the convenient preparation of sulfinamides. The reaction allows for the gram-scale preparation of sulfinamides and the one-pot synthesis of various sulfonyl amides.

ORGANIC & BIOMOLECULAR CHEMISTRY (2024)

Article Chemistry, Organic

Two distinct protocols for the synthesis of unsymmetrical 3,4-disubstituted maleimides based on transition-metal catalysts

Farzaneh Bandehali-Naeini, Zahra Tanbakouchian, Noushin Farajinia-Lehi, Nicolas Mayer, Morteza Shiri, Martin Breugst

Summary: Two tandem catalytic systems were developed for the synthesis of novel 3,4-disubstituted maleimides using the same Ugi adducts. Different maleimide structures can be synthesized using either Pd or Cu catalysis.

ORGANIC & BIOMOLECULAR CHEMISTRY (2024)

Article Chemistry, Organic

Conversion of amino-terephthalonitriles to multi-substituted single benzene fluorophores with utility in bioimaging

Tanya Raghava, Anjan Chattopadhyay, Subhadeep Banerjee, Nivedita Sarkar

Summary: Amine substitution of two ortho fluorine atoms of tetrafluoroterephthalonitrile through SNAr chemistry is easily achievable. But further fluorine substitution is only possible under forcing conditions, yielding valuable fluorophores for bioimaging.

ORGANIC & BIOMOLECULAR CHEMISTRY (2024)

Review Chemistry, Organic

Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis

Anju Chadha, Santosh Kumar Padhi, Selvaraj Stella, Sowmyalakshmi Venkataraman, Thangavelu Saravanan

Summary: Alcohol dehydrogenases are enzymes that use cofactors for oxidation or reduction reactions of alcohols or carbonyl compounds. They are utilized in green chemistry and have applications in the production of pharmaceuticals. Recombinant enzymes have solved the challenge of producing purified enzymes in large quantities. Engineered alcohol dehydrogenases have been used in asymmetric synthesis in industry. Various methods have been established for regenerating expensive cofactors to make the enzymatic process more efficient and economically viable.

ORGANIC & BIOMOLECULAR CHEMISTRY (2024)