4.5 Article

An optical fiber glass containing PbSe quantum dots

Journal

OPTICS COMMUNICATIONS
Volume 284, Issue 19, Pages 4491-4495

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.optcom.2011.05.004

Keywords

Glass; Optical fiber; PbSe quantum dot; Photoluminescence

Categories

Funding

  1. National Natural Science Foundation of China [60777023]
  2. Zhejiang Provincial Natural Science Foundation of China [Z407371]

Ask authors/readers for more resources

An optical fiber material, sodium-aluminum-borosilicate glass doped with PbSe quantum dots (QDs) is synthesized by a high-temperature melting method. Crystallization, size distribution and absorption-photoluminescence (PL) of this material are observed by XRD, TEM, and spectrometer respectively. The obtained results indicate that the glass contains QDs in diameter of 6-13 nm depending on the heat-treatment temperature and with a higher doped concentration than those available. It shows an enhanced PL, widened FWHM (275-808 nm), obvious Stokes shift (20-110 nm), with the PL peak wavelength located within 16762757 nm depending on the size of QD. The glass is fabricated into an optical fiber in diameter of 10-70 mu m and length of 1 m, with pliability and ductility similar to usual SiO2 fibers. It can be easily fused and spliced with SiO2 fibers due to a small difference of melting point between them. Characterized by high doped concentration and broad FWHM, this study suggests that the glass can be applied to designing novel broadband fiber amplifiers working in C-L waveband. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Enhancing Quantum Dots for Bioimaging using Advanced Surface Chemistry and Advanced Optical Microscopy: Application to Silicon Quantum Dots (SiQDs)

Xiaoyu Cheng, Elizabeth Hinde, Dylan M. Owen, Stuart B. Lowe, Peter J. Reece, Katharina Gaus, J. Justin Gooding

ADVANCED MATERIALS (2015)

Article Optics

Near-infrared absorption-emission cross-sections of PbSe quantum dots doped in UV gel

Cheng Cheng, Yinhui Xu, Xiaoyu Cheng

OPTICS COMMUNICATIONS (2015)

Article Biochemical Research Methods

Protease sensing using nontoxic silicon quantum dots

Xiaoyu Cheng, Benjamin F. P. McVey, Andrew B. Robinson, Guillaume Longatte, Peter B. O'Mara, Vincent T. G. Tan, Pall Thordarson, Richard D. Tilley, Katharina Gaus, John Justin Gooding

JOURNAL OF BIOMEDICAL OPTICS (2017)

Article Optics

Photoluminescence lifetime and absorption spectrum of PbS nanocrystal quantum dots

Cheng Cheng, Jiejie Li, Xiaoyu Cheng

JOURNAL OF LUMINESCENCE (2017)

Article Optics

Experimental realization of a PbSe quantum dot doped fiber amplifier with ultra-bandwidth characteristic

Cheng Cheng, Nengshu Hu, Xiaoyu Cheng

OPTICS COMMUNICATIONS (2017)

Review Engineering, Electrical & Electronic

Optical Biosensing and Bioimaging with Porous Silicon and Silicon Quantum Dots

Xiaoyu Cheng, Bin Guan

PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER (2017)

Review Chemistry, Multidisciplinary

Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications

Xiaoyu Cheng, Stuart B. Lowe, Peter J. Reece, J. Justin Gooding

CHEMICAL SOCIETY REVIEWS (2014)

Article Engineering, Electrical & Electronic

Study of an Unsaturated PbSe QD-Doped Fiber Laser by Numerical Simulation and Experiment

Cheng Cheng, Fang Yuan, Xiaoyu Cheng

IEEE JOURNAL OF QUANTUM ELECTRONICS (2014)

Article Chemistry, Multidisciplinary

Versatile Click Chemistry Approach to Functionalizing Silicon Quantum Dots: Applications toward Fluorescent Cellular Imaging

Xiaoyu Cheng, Stuart B. Lowe, Simone Ciampi, Astrid Magenau, Katharina Gaus, Peter J. Reece, J. Justin Gooding

LANGMUIR (2014)

Article Chemistry, Multidisciplinary

Synthesis, optical properties and theoretical modelling of discrete emitting states in doped silicon nanocrystals for bioimaging

B. F. P. McVey, D. Koenig, X. Cheng, P. B. O'Mara, P. Seal, X. Tan, H. A. Tahini, S. C. Smith, J. J. Gooding, R. D. Tilley

NANOSCALE (2018)

Article Materials Science, Biomaterials

Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli

Xin Chen, Xiaoyu Cheng, Alexander H. Soeriyadi, Sharon M. Sagnella, Xun Lu, Jason A. Scott, Stuart B. Lowe, Maria Kavallaris, J. Justin Gooding

BIOMATERIALS SCIENCE (2014)

Article Chemistry, Physical

Plasmon Heating Promotes Ligand Reorganization on Single Gold Nanorods

Xiaoyu Cheng, Taryn P. Anthony, Claire A. West, Zhongwei Hu, Vignesh Sundaresan, Aaron J. McLeod, David J. Masiello, Katherine A. Willets

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2019)

Article Chemistry, Multidisciplinary

Freeze-Facilitated Ligand Binding to Plasmonic Gold Nanorods

Yang Ye, Zhenchao Liu, Wenyao Zhang, Xiaoyu Cheng, Sailing He

ADVANCED MATERIALS INTERFACES (2019)

Article Physics, Multidisciplinary

Effects of surface polarization on the bandgap and the absorption-peak wavelength of quantum dot at room temperature

Cheng Cheng, Wang Guo-Dong, Cheng Xiao-Yu

ACTA PHYSICA SINICA (2017)

Proceedings Paper Engineering, Biomedical

COLLOIDAL SILICON QUANTUM DOTS: FROM PREPARATION TO THE MODIFICATION OF SELF-ASSEMBLED MONOLAYERS FOR BIOIMAGING AND SENSING APPLICATIONS

Xiaoyu Cheng, Benjamin F. P. McVey, Andrew B. Robinson, Guillaume Longatte, Peter B. O'Mara, Vincent T. G. Tan, Pall Thordarson, Richard D. Tilley, Katharina Gaus, J. Justin Gooding

COLLOIDAL NANOPARTICLES FOR BIOMEDICAL APPLICATIONS XII (2017)

Article Optics

Study on removal of aluminum alloy oxide film by continuous-nanosecond combined laser with different pulse delays

Hang Dong, Zhixin Sun, Jingyi Li, Yahui Li, Wei Zhang, Guangyong Jin

Summary: This paper calculates thermal stresses and adsorption forces to determine laser cleaning conditions and establishes relevant models. Experimental results show that the removal effect is better with increasing nanosecond pulse delay, with the best effect achieved at 600 milliseconds pulse delay. Based on the findings, the mechanisms of oxide film removal involve thermal stress against adsorption and plasma shock wave breaking the oxide layer.

OPTICS COMMUNICATIONS (2024)

Article Optics

Near-infrared tunable Tamm plasmons high-performance hot electron photodetector based on Ag/Ge2Sb2Te5 low Schottky barrier

Junjie Zhang, Wenjun Li, Bingtao Li, Zheng-Da Hu, Jicheng Wang, Feng Zhang, Lei Wang

Summary: A multilayer thin film device structure based on Tamm plasmons is proposed for high-performance near-infrared hot electron photodetectors. By optimizing the device structure parameters, high responsivity detection can be achieved.

OPTICS COMMUNICATIONS (2024)

Article Optics

ADMM algorithm for Computational ghost imaging using Hadamard derivative pattern

Hong Huang, Zhiguang Han

Summary: This paper proposes a new ghost imaging reconstruction method using ordered orthogonal Hadamard derived speckle as the illumination speckle series, and introduces the alternating direction multiplier method to improve the imaging performance. The evaluation results show that the method can achieve high-quality reconstructed images under low sampling conditions.

OPTICS COMMUNICATIONS (2024)

Article Optics

Exploring the influence of wavelength and polarization of illuminating light on polarization imaging for birefringent objects concealed behind scattering structure

Moritsugu Sakamoto, Yuki Ono, Kohei Noda, Tomoyuki Sasaki, Nobuhiro Kawatsuki, Masayuki Tanaka, Hiroshi Ono

Summary: The effect of wavelength and polarization of illuminating light in polarization imaging for birefringent objects placed behind a scattering structure was experimentally investigated. The result shows that the spatial distribution of the birefringent object was more clearly visualized in the longer wavelength combined with circularly polarized light illumination. This finding indicates the potential of using polarization imaging with circularly polarized light illumination in the near-infrared range for visualizing birefringent objects with scattering.

OPTICS COMMUNICATIONS (2024)

Article Optics

Tuning strong coupling towards the deep ultraviolet region realized through Tamm-plasmon exciton-polaritons

Peihui Du, Hongfang Wang, Pengwei Li, Rukeyemuhan Abadula, Hmbat Batelbek, Min Gao

Summary: In this study, we theoretically demonstrate the strong coupling between Tamm plasmons and exciton polaritons in metal Al/DBR-molecular structures, extending the operating wavelength to the deep ultraviolet region. The coupling strength can be effectively manipulated by adjusting the structure parameters, offering potential benefits for the development of new-style optical filters.

OPTICS COMMUNICATIONS (2024)

Article Optics

Switching dynamics in adiabatically coupled PT-symmetric directional coupler consisting of three nonlinear waveguides

Priyanka Chaudhary, Akhilesh Kumar Mishra

Summary: We design and numerically investigate the switching dynamics between two outer waveguides in a parity-time (PT)-symmetric adiabatically coupled three waveguides nonlinear directional coupler (NLDC) system. The study shows that the device can provide switching even when the middle waveguide is nonlinear and the outer waveguides are linear. Furthermore, the effect of loss to gain ratio on critical switching power and the impact of launched light power and gain (loss) value on transmitted power are also studied.

OPTICS COMMUNICATIONS (2024)

Article Optics

High turbidity underwater single-pixel imaging based on Unet plus plus and attention mechanism at a low sampling

Wei Feng, Yongcong Yi, Shuyang Li, Zhi Xiong, Boya Xie, Zhen Zeng

Summary: Traditional imaging techniques are ineffective in achieving clear underwater imaging due to the presence of scattering media. Single-pixel imaging (SPI) system based on Unet++ offers a solution for reconstructing high-quality images in highly turbid water environments.

OPTICS COMMUNICATIONS (2024)

Article Optics

Compressive hyperspectral imaging based on Images Structure Similarity and deep image prior

Xiaorui Qu, Jufeng Zhao, Haijun Tian, Junjie Zhu, Guangmang Cui

Summary: This paper studies the structural similarity between RGB and spectral images and proposes a non-iterative Images Structure Similarity (ISS) method for fast reconstruction of spectral images. Additionally, the input of the Deep Image Prior (DIP) method is optimized for the first time by using the initial spectral data reconstructed by ISS, leading to an improved starting value for the iteration. The experimental results show that the proposed method can enhance the reconstruction quality in both spectral and spatial resolutions, while significantly reducing the reconstruction time compared to other DIP-based methods.

OPTICS COMMUNICATIONS (2024)

Article Optics

Distributed multi-parameter sensor based on Brillouin scattering in an etched few-mode multi-core fiber

Donghe Sheng, Zhe Han, Zanyang Qiao, Tianpei Dong, Chenxi Wang, Huiping Tian

Summary: In this study, a distributed multi-parameter sensor based on an etched few-mode multi-core fiber is proposed, allowing simultaneous sensing of temperature, strain, and sample refractive index. By combining space division multiplexing and stimulated Brillouin scattering, the sensor achieves high sensitivity in detecting these parameters.

OPTICS COMMUNICATIONS (2024)

Article Optics

Elliptical Airyprime vortex beam

Dehao Chen, Zhenwu Mo, Zehong Liang, Junjie Jiang, Huilin Tang, Yidan Sun, Ziyu Wang, Quanfeng Wei, Yanru Chen, Dongmei Deng

Summary: In this study, a novel family of elliptical Airyprime vortex beams (EAPVBs) is introduced, which inherits the excellent self-focusing properties of the circular Airyprime vortex beam (CAPVB). The asymmetric focusing of EAPVB leads to some novel properties, such as the splitting of high-order optical vortex and the formation of two foci. By taking advantage of these properties, EAPVB is constructed as a tunable optical bottle for particle capture.

OPTICS COMMUNICATIONS (2024)

Article Optics

Su8-waveguide based phase corrected fourier transform spectrometer chip with low side ripples

Xiao Ma, Qiongchan Shao, Jian-Jun He

Summary: In this study, an SHS chip based on Su8 waveguide was designed and fabricated. By physically adjusting the metal electrodes and compensating for transmissivity fluctuations, the generation of side ripples was successfully suppressed.

OPTICS COMMUNICATIONS (2024)

Article Optics

Numerical design of a dual-wavelength confocal metalens with photonic crystal filter based on filter-substrate-metasurface structure

Hongbin Zhang, Jiansen Du, Zongtao Chi, Hailin Cong, Bin Wang

Summary: In this paper, a novel type of dual-wavelength confocal metalens is proposed to solve the spatial crosstalk between two wavelengths. The metalens can greatly reduce the spatial crosstalk and achieve high precision and efficiency in confocal imaging. It can also focus light in specific wavelength ranges, making it suitable for imaging, microscopy, and optical fiber communication.

OPTICS COMMUNICATIONS (2024)

Article Optics

Neural network-assisted design of GSST-based achromatic metalens with continuously variable focal heights

Rui Qiu, Guanmao Zhang, Shaokai Du, Jie Liu, Hongyu Jib, Kaiyun Bi, Bochuan Xing, Guangchao Diao

Summary: Recent research has developed an achromatic metalens that shows potential for replacing traditional lenses. This study focuses on a continuously variable focus height broadband achromatic metalens for long-wavelength infrared applications. By optimizing materials and parameters, chromatic aberration is effectively corrected, making it suitable for high-resolution LWIR imaging and spectroscopy systems.

OPTICS COMMUNICATIONS (2024)

Article Optics

Experimental demonstration of 480 Gbit/s coherent transmission using a nanosecond switching tuneable laser

Marcos Troncoso-Costas, Gaurav Jain, Yiming Li, Mohammed Patel, Lakshmi Narayanan Venkatasubramani, Sean O'Duill, Frank Smyth, Andrew Ellis, Francisco Diaz-Otero, Colm Browning, Liam Barry

Summary: In this work, a fast-switching tuneable laser capable of wide wavelength coverage, low noise and linewidth levels suitable for high-order modulation formats is demonstrated. The laser is characterized to cover a wavelength range of 35 nm in the C-band with nanosecond switching time. It is used to successfully demonstrate 480 Gbit/s 16QAM transmission over 25 km of single-mode fiber for a wavelength range of 19 nm.

OPTICS COMMUNICATIONS (2024)

Article Optics

Photocarrier dynamics in thick Si film studied by optical pump-terahertz probe spectroscopy

Takeshi Moriyasu, Masahiko Tani, Hideaki Kitahara, Takashi Furuya, Jessica Afalla, Toshiro Kohmoto, Daishiro Koide, Hiroki Sato, Mitsutaka Kumakura

Summary: Optical pump-terahertz probe spectroscopy was used to study the photocarrier dynamics and optical characteristics of semiconductor Si. The results showed that the thickness of Si influenced the transmitted terahertz field amplitude and peak delay time, indicating differences in photocarrier dynamics between different Si materials.

OPTICS COMMUNICATIONS (2024)