4.7 Article

Substitutional group dependent colori/fluorimetric sensing of Mn2+, Fe3+ and Zn2+ ions by simple Schiff base chemosensor

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2014.10.061

Keywords

Fluorescence sensor; Colorimetric sensor; Zn2+ sensor; Mn2+ sensor; Fe3+ sensor

Categories

Funding

  1. DST, New Delhi, India [SR/FT/CS-03/2011]

Ask authors/readers for more resources

Schiff base is one of the easiest synthesizable chemosensor and exhibit strong coordination with metal ions; the property that has been vastly exploited for metal ions sensing. Simple Schiff base chemosensors (1a-d and 2a-d) were synthesized and demonstrated substitutional group dependent colorimetric sensing of metal ions. Chemosensor without (1a, 2a) and OCH3 substitution (1b, 2b) did not show any significant colour change for metal ions. However, a highly selective colorimetric change (colourless to pink) for Mn2+. ions (10(-6) M) was observed with diethylamine substituted 1c, 2c. Hydroxyl substitution (1d, 2d) leads to selective colorimetric sensing (colourless to orange) of Fe3+ ions (10(-6) M). PVA thin films of 2c/2d were fabricated and demonstrated selective colorimetric sensing of Mn2+ and Fe3+ ions. The practical applicability of the synthesized chemosensors were also demonstrated by performing selective colorimetric sensing of Mn2+ and Fe3+ ions in real samples such as tap, ground, pond and river water. Effect of substitution on the fluorescence selectivity of Zn2+ has also been investigated. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available