4.8 Article

Toward Microfluidic Reactors for Cell-Free Protein Synthesis at the Point-of-Care

Journal

SMALL
Volume 12, Issue 6, Pages 810-817

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201502764

Keywords

biologics; cell-free protein synthesis; electron-beam lithography; microfluidics; microreactors

Funding

  1. DARPA [HR001134005]
  2. U.S. Department of Energy [DE-AC05-00OR22725]

Ask authors/readers for more resources

Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro and nanofluidic architectures, CFPS can be optimized for point-of-care use. Here, the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care, is described. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel reactor and feeder channels. This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species, and can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. It has been shown that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available