4.8 Article

On the Origin and Underappreciated Effects of Ion Doping in Silica

Journal

SMALL
Volume 11, Issue 34, Pages 4351-4365

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201500539

Keywords

-

Funding

  1. A*STAR (SERC) [112-120-2011]
  2. MOE of Singapore [RG14/13]

Ask authors/readers for more resources

The origin of selectivity in the hollowing of silica nanoparticles is investigated to further understand silica. It is realized that, during the synthesis, the silica precursors are essentially ion-paired polyelectrolytes, whose nucleation depends on the concentration of the counter ions, and most importantly, the size/length of the poly(silicic acid). Thus, the silica that nucleates out at the different stages of synthesis has different degrees of ion doping, which explains its solubility in water, its microporosity, and the selective etching phenomena. The etching of silica in water is shown to be a matter of silica solubility, which correlates to the relative amounts of solvent and to the solvent quality (the water/isopropanol ratio). Hollowing does not occur when the silica nanoparticles are incubated in solutions presaturated with silica, ruling out surface reposition and Ostwald ripening as the hollowing mechanism. The embedded ions in silica are confirmed by elemental analysis (CHNS) and inductively coupled plasma-mass spectrometry. The high ionic doping ratios (N/Si = 2.3% for NH3-catalyzed silica; Na/Si = 11.2% for NaOH-catalyzed silica) explain the unusual solubility of silica in neutral water. The new view of silica with the ionic impurities on the central stage allows for insights in silica properties and versatility in synthetic design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available