4.3 Article

Towards elastic anisotropy and strain-induced void formation in Cu-Sn crystalline phases

Journal

MICROELECTRONICS RELIABILITY
Volume 49, Issue 3, Pages 264-268

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.microrel.2008.10.018

Keywords

-

Ask authors/readers for more resources

The Cu-Sn alloys have been used since ancient times. At present they attract much interest since the formation and growth of Cu-Sn intermetallic compounds, namely, Cu3Sn and Cu6Sn5, play an important role in the kinetics of the soldering reaction in microelectronics packaging. Their formation kinetics as well as mechanical properties has shown to be crucial for the integrity of solder joints. In this work, we report elastic properties Of Cu3Sn and Cu6Sn5 crystalline phases using first-principles calculations based on the density functional theory. The elastic anisotropy of these phases, which is difficult to resolve from experiments, is fully discussed. Our results show that both crystalline phases have the greatest stiffness along the c direction. In particular, Cu3Sn exhibits in-plane anisotropy, which is associated with the lattice modulation within the superstructure. We also propose a void formation mechanism based on the computed bond anisotropy of Sn-Cu and Cu-Cu in Cu3Sn. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available