4.5 Article

Neutral aldoses as source indicators for marine snow

Journal

MARINE CHEMISTRY
Volume 108, Issue 3-4, Pages 195-206

Publisher

ELSEVIER
DOI: 10.1016/j.marchem.2007.11.008

Keywords

neutral aldoses; marine snow; aggregation; colloids; organic matter; biological lability; USA; California; Santa Barbara channel

Ask authors/readers for more resources

The chemical characteristics of aggregating material in the marine environment are largely unknown. We investigated neutral aldose (NA) abundance and composition in aggregation of marine snow and other organic matter (OM) size fractions in the field. Four sample sets were fractionated using membrane filtration and ultrafiltration into the following size fractions: particulate material, high-molecular-weight (HMW) material, and low-molecular-weight (LMW) material. We also collected three sample sets of marine-snow aggregates. Each sample set contained small, medium, and large aggregate size fractions and each size fraction consisted of 25-50 aggregates. For 7 marine-snow samples and for each water-sample size fraction, we determined monomeric and polymeric NA concentration, NA yield (amount of NA-C normalized to organic carbon), and composition; total organic carbon (TOC) concentration; transparent exopolymer particles (TEP) concentration, and TEP propensity (TEP concentration after inducing TEP formation in filtered samples). This is the first study to include compound-specific NA determinations on these four marine OM size fractions. The mass balances of organic carbon and NA indicated that there were no serious contamination or loss problems. Concentrations, yields, and NA mol fractions in water samples were similar to results from other studies. Glucose and galactose had the highest relative abundance in all size fractions. The NA yield increased with increasing molecular weight or particle size for all fractions except marine snow. The NA yield increased in the order: LMW

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available