4.6 Article

Synthesis of Submicrometer Hollow Particles with a Nanoscale Double-Layer Shell Structure

Journal

LANGMUIR
Volume 28, Issue 39, Pages 13783-13787

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la302841c

Keywords

-

Funding

  1. U.S. Department of Energy [DE-FG-02-05ER46243]
  2. National Science Foundation [0933734, 1034175, 1236089]
  3. Gulf of Mexico Research Initiative
  4. PKSFI program of the Louisiana Board of Regents
  5. Directorate For Engineering
  6. Div Of Chem, Bioeng, Env, & Transp Sys [1043163, 0933734, 1236089] Funding Source: National Science Foundation
  7. Directorate For Engineering
  8. Div Of Chem, Bioeng, Env, & Transp Sys [1034175] Funding Source: National Science Foundation

Ask authors/readers for more resources

The morphology of hollow, double-shelled submicrometer particles is generated through a rapid aerosol-based process. The inner shell is an essentially hydrophobic carbon layer of nanoscale dimension (20 nm), and the outer shell is a hydrophilic silica layer of approximately 40 nm, with the shell thickness being a function of the particle size. The particles are synthesized by exploiting concepts of salt bridging to lock in a surfactant (CTAB) and carbon precursors together with iron species in the interior of a droplet. This deliberate negation of surfactant templating extremely rapidly, sealing in the organic species in the particle interior. Subsequent pyrolysis results in a buildup of internal pressure, forcing carbonaceous species against the silica wall to form an inner shell of carbon. The incorporation of magnetic iron oxide into the shells opens up applications in external stimuli-responsive nanomaterials. allows a silica shell to form

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available