4.6 Article

Preparation of Dually, pH- and Thermo-Responsive Nanocapsules in Inverse Miniemulsion

Journal

LANGMUIR
Volume 28, Issue 2, Pages 1163-1168

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la2041357

Keywords

-

Funding

  1. National Natural Scientific Foundation of China (NNSFC) [51003023]
  2. Hangzhou Normal University [2011QDL04]
  3. Deutsche Forschungsgemeinschaft (DFG) within the Cooperative Research Center [SFB 569]

Ask authors/readers for more resources

pH- and thermo-sensitive nanocapsules were successfully synthesized via inverse miniemulsion copolymerization of N-isopropyl acrylamide (NIPAM), N,N'-methylene bisacrylamide (MBA), and a functional monomer, 4-vinyl pyridine (4-VP). The size and size distribution of nanocapsules were measured by dynamic light scattering (DLS). The particle morphology was observed by transmission electron microscopy (TEM). The final morphology of particles was strongly influenced by the hydrophobicity of functional monomers. The use of a hydrophilic functional monomer, acrylic acid, led to the formation of solid particles, while the use of the more hydrophobic functional monomer, 4-VP, resulted in the formation of nanocapsules. The particle morphology, size, and size distribution were investigated in terms of the content of 4-VP, MBA, and the type and content of surfactant. The pH- and thermo-sensitivities were characterized by measuring the size variation with the change of temperature and pH. The organic-inorganic nanocapsules were prepared by coating a layer of silica particles on the surface of the sensitive nanocapsules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Correction Chemistry, Multidisciplinary

Aerobic Photobiocatalysis Enabled by Combining Core-Shell Nanophotoreactors and Native Enzymes (vol 144, pg 7320, 2022)

Wenxin Wei, Francesca Mazzotta, Ingo Lieberwirth, Katharina Landfester, Calum T. J. Ferguson, Kai A. I. Zhang

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Nanoscience & Nanotechnology

Tunable Photocatalytic Selectivity by Altering the Active Center Microenvironment of an Organic Polymer Photocatalyst

Julian Heuer, Thomas Kuckhoff, Rong Li, Katharina Landfester, Calum T. J. Ferguson

Summary: The production of photocatalytic self-assembled amphiphilic polymers enables selective control over reactions based on the substrate's physical properties. By polymerizing benzothiadiazole-based photocatalysts into hydrophilic or hydrophobic compartments, we achieved stark differences in reactivity for polar substrates but similar performance for hydrophobic substrates. Additionally, the use of secondary swelling solvents led to a significant increase in conversion for a radical carbon-carbon coupling reaction.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Visible-Light-Promoted Switchable Selective Oxidations of Styrene Over Covalent Triazine Frameworks in Water

Cyrine Ayed, Jie Yin, Katharina Landfester, Kai A. I. Zhang

Summary: Using photocatalytic oxidation to convert basic chemicals into high value compounds in environmentally benign reaction media is a current focus in catalytic research. The challenge of gaining controllability over product formation selectivity was addressed by designing covalent triazine frameworks as recyclable photocatalysts. Controlled selectivity was achieved by activating or deactivating specific photogenerated oxygen species. This study demonstrates a promising approach for achieving switchable product formation selectivity for challenging oxidation reactions in pure water.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Biochemistry & Molecular Biology

Controlled Membrane Transport in Polymeric Biomimetic Nanoreactors

Shoupeng Cao, Tsvetomir Ivanov, Marina de Souza Melchiors, Katharina Landfester, Lucas Caire da Silva

Summary: The article discusses the importance of polymersome-based biomimetic nanoreactors (PBNs) in nanomedicine and cell mimicry. It highlights the state of the art in functional polymersomes as biomimetic nanoreactors with membrane-controlled transport.

CHEMBIOCHEM (2023)

Article Chemistry, Multidisciplinary

pH-Triggered Recovery of Organic Polymer Photocatalytic Particles for the Production of High Value Compounds and Enhanced Recyclability

Rong Li, Julian Heuer, Thomas Kuckhoff, Katharina Landfester, Calum T. J. Ferguson

Summary: Pseudo-homogeneous polymeric photocatalysts are efficient and tunable materials with easily accessible catalytic centers. Creating highly efficient photocatalytic materials that can be separated and recovered quickly is a critical challenge. This study presents pH-responsive photocatalytic nanoparticles that are active and well-dispersed under acidic conditions but aggregate upon pH elevation, allowing easy recovery. These responsive photocatalytic polymers can be used in various transformations and can accelerate the reaction rate of anionic substrates.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Robust Protocol for the Synthesis of BSA Nanohydrogels by Inverse Nanoemulsion for Drug Delivery

Susanne Sihler, Markus Kraemer, Felicitas Schmitt, Patrizia Favella, Laura Muetzel, Jennifer Baatz, Frank Rosenau, Ulrich Ziener

Summary: BSA nanogels are efficiently prepared from inverse nanoemulsions using a reproducible process. The nanoreactors in the nanoemulsions allow high protein concentrations in the system. The nanogels can be loaded with various cargos and used as carriers for staining and transfection of cells.

LANGMUIR (2023)

Article Materials Science, Multidisciplinary

Enhanced Thermal Conductivity of Phase Change Microcapsules Based on Boron Nitride/Graphene Oxide Composite Sheets

Lutong Zhao, Xinlei Wu, Xiangkai Hu, Sijia Zheng, Zhihai Cao

Summary: Phase change microcapsules (PCMCs) with paraffin as the core material were synthesized through in situ polymerization. The melamine-formaldehyde (MF) polymer shell of PCMCs was modified with boron nitride/graphene oxide composite sheets (BN/GO CSs) to enhance the thermal conductivity. The optimized CPCMCs exhibited a significantly increased thermal conductivity of about 190% compared to pure paraffin. The incorporation of BN/GO CSs had no significant influence on the encapsulation process and allowed for high encapsulation rate (>93%) and high phase change enthalpy (approximately 200 J center dot g-1). This research provides valuable insights into incorporating multiple fillers in PCMCs and demonstrates the synergistic effect of BN/GO CSs in improving thermal conductivity without compromising heat storage capacity.

ACS APPLIED POLYMER MATERIALS (2023)

Article Nanoscience & Nanotechnology

Polymeric Microreactors with pH-Controlled Spatial Localization of Cascade Reactions

Tsvetomir Ivanov, Shoupeng Cao, Nitin Bohra, Marina de Souza Melchiors, Lucas Caire da Silva, Katharina Landfester

Summary: We have developed a fully polymeric microreactor with a coacervate-in-vesicle architecture that exhibits an adaptive response to pH. The microreactor allows for the dynamic modulation of internal subcompartments, resulting in the sequestration and localization of enzymes and reaction products driven by environmental cues.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

Exploring Lipoic Acid-Mediated Dynamic Bottlebrush Elastomers as a New Platform for the Design of High-Performance Thermally Conductive Materials

Sijia Zheng, Haiyan Xue, Jun Yao, Yang Chen, Michael A. Brook, Muhammad Ebad Noman, Zhihai Cao

Summary: The development of high-performance thermally conductive interface materials is crucial for addressing the heat dispersion problem in modern microelectronics. However, existing methods have limitations in terms of physical traits and processability. In this study, we propose a novel approach using malleable silicone matrices based on α-lipoic acid cross-linker to create highly efficient thermal conductive composites. These composites have a 3D interconnecting, thermally conductive network and show great potential in advanced electronics, as demonstrated by applications in LEDs and CPUs.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Liposomal Enzyme Nanoreactors Based on Nanoconfinement for Efficient Antitumor Therapy

Ran Wang, Yingjie Yu, Meiyu Gai, Ana Mateos-Maroto, Svenja Morsbach, Xiang Xia, Maomao He, Jiangli Fan, Xiaojun Peng, Katharina Landfester, Shuai Jiang, Wen Sun

Summary: Enzymatic reactions can effectively inhibit tumor growth by consuming tumor nutrients and producing cytotoxic species. Liposomal nanoreactors that perform enzymatic cascade reactions have been developed, increasing the overall efficiency of the reaction. This biomimetic approach provides a promising direction for developing catalytic nanomedicines in antitumor therapy.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Revealing the Origin of Fast Delayed Fluorescence in a Donor Functionalized Bisterpyridine

Felix D. Goll, Andreas Schelhorn, Dziugas Litvinas, Francisco Tenopala-Carmona, Lev Kazak, Fedor Jelezko, Christoph Lambert, Malte C. Gather, Alexander J. C. Kuehne, Ulrich Ziener

Summary: This study presents a new carbazole-substituted bisterpyridine with pronounced delayed fluorescence. Various photophysical characterizations, OLED characteristics, temperature-dependent NMR spectroscopy, and DFT calculations suggest that the delayed emission is caused by rotational vibrational modes, rather than triplet states. These results have general applicability in the field of organic light emitting materials.

CHEMISTRY-A EUROPEAN JOURNAL (2023)

Review Biochemistry & Molecular Biology

Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy

Jenny Schunke, Volker Mailaender, Katharina Landfester, Michael Fichter

Summary: Finding a long-term cure for tumor patients remains challenging. Immunotherapies show promise by activating the immune system against tumors and modulating the tumor microenvironment. However, current methods often fail to sufficiently activate the immune system and have limitations such as drug degradation and non-specific uptake. Encapsulating immunomodulatory molecules into nanocarriers offers a solution by protecting cargo and targeting uptake by antigen-presenting cells. This approach allows for versatile immune system stimulation and improved anti-tumor responses with reduced toxicity.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2023)

Article Chemistry, Physical

Anti-PEG antibodies enriched in the protein corona of PEGylated nanocarriers impact the cell uptake

Mareike F. S. Deuker, Volker Mailaender, Svenja Morsbach, Katharina Landfester

Summary: Poly(ethylene glycol) (PEG) is commonly used to reduce unspecific protein adsorption and prolong nanocarrier circulation time, but the presence of anti-PEG antibodies in the bloodstream can counteract its stealth effect. This study found a high concentration and prevalence of anti-PEG antibodies in the German population, which led to higher uptake in macrophages and accelerated blood clearance of PEGylated nanocarriers.

NANOSCALE HORIZONS (2023)

Article Cell Biology

Uptake of extracellular vesicles into immune cells is enhanced by the protein corona

Laura Dietz, Jennifer Oberlaender, Ana Mateos-Maroto, Jenny Schunke, Michael Fichter, Eva-Maria Kraemer-Albers, Katharina Landfester, Volker Mailaender

Summary: This study analyzed the protein composition of extracellular vesicles (EVs) and the protein corona around EVs in human blood plasma using a proteomic approach. The influence of the protein corona on the uptake of EVs by human monocytes was then compared with the uptake of engineered liposomes. The results showed that the presence of a protein corona increased the uptake of EVs in human monocytes, indicating a clear difference between EVs and liposomes as nanocarriers.

JOURNAL OF EXTRACELLULAR VESICLES (2023)

Article Chemistry, Multidisciplinary

Assembly of Multi-Compartment Cell Mimics by Droplet-Based Microfluidics

Tsvetomir Ivanov, Shoupeng Cao, Thao P. Doan-Nguyen, Heloisa Bremm Madalosso, Lucas Caire da Silva, Katharina Landfester

Summary: There is an increasing interest in multi-compartment systems that mimic the structure and function of biological cells. Droplet-based microfluidics (DBM) has emerged as a powerful technique for creating cell-like systems with multi-compartment architectures and biomimetic functionality. DBM has proven to be a reliable method for generating populations of cell-mimics with a compartment-in-compartment structure, some of which have adaptable properties that resemble the dynamic properties of natural cells. This review highlights the progress made in the construction of hierarchical cell-mimics using DBM methods.

CHEMSYSTEMSCHEM (2023)

No Data Available