4.6 Article

Fabrication of 3D Metal Dot Arrays by Geometrically Structured Dynamic Shadowing Lithography

Journal

LANGMUIR
Volume 27, Issue 22, Pages 13806-13812

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la2027785

Keywords

-

Funding

  1. National Science Foundation [EPS-1003907]
  2. WVNano Initiative at WVU

Ask authors/readers for more resources

Sphere lithography (SL), sometimes erroneously generalized as nanosphere lithography (NSL), stands out as a versatile technique capable of producing 2D periodic micro- and nanostructures with general materials applicability, flexible size and shape control, high throughput, and elegance of simplicity. Many of the fundamental aspects of the features produced by SL have been investigated in a systematic manner, including the optical, magnetic, electronic, and catalytic behaviors with emphasis toward applications in biosensing, ultrasensitive spectroscopy, and nanodevice fabrication. Previous work has primarily focused on two-dimensional patterning, however, with little attention paid to vertical growth of the SL features. In this work, the 3D structural evolution of metal dot arrays at two different length scales was demonstrated by SL-based geometrically structured dynamic shadowing lithography (GSDSL). An empirically derived model of structural growth is also developed to predict the shape and size of the features in this system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available