4.6 Article

Enhancing the Effect of the Nanofiber Network Structure on Thermoresponsive Wettability Switching

Journal

LANGMUIR
Volume 27, Issue 24, Pages 14716-14720

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la203396y

Keywords

-

Funding

  1. New Energy and Industrial Technology Development Organization, NEDO, Japan

Ask authors/readers for more resources

This letter reports the enhancing effects of a nanofiber network structure on stimuli-responsive wettability switching. Thermoresponsive coatings composed of nanofibers were prepared by electrospinning from thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAAm). The nanofiber coatings showed a large amplitude of thermoresponsive change in the wettability from hydrophilic to hydrophobic states compared to a smooth cast film. In particular, the combination of the surface chemistry and unique topology of the electrospun nanofiber coatings enables a transition from the Wenzel state to the metastable Cassie-Baxter state with an increase in temperature and consequently an enhanced amplitude of change in the water contact angles: the apparent contact angle differences between 25 and 50 degrees C are Delta theta(25-50 degrees C)* = 108 and 10 degrees for the nanofiber coatings with a diameter of 830 nm and a smooth cast film, respectively. The fabrication of the 3D nanofiber network structure by electrospinning from stimuli-responsive materials is a promising option for highly responsive surfaces in wettability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available