4.6 Article

Facile Method to Prepare Smooth and Homogeneous Polymer Brush Surfaces of Varied Brush Thickness and Grafting Density

Journal

LANGMUIR
Volume 25, Issue 23, Pages 13448-13455

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la901785t

Keywords

-

Funding

  1. DoE [DE-FG02-07ER46390]
  2. University of Notre Dame
  3. 3M nontenured faculty award

Ask authors/readers for more resources

This Article describes a facile method to prepare smooth and homogeneous polymer brush surfaces of variable grafting density from a solid surface by combining Langmuir-Blodgett (LB) deposition with surface-initiated atom transfer radical polymerization (SI-ATRP). This method is successfully demonstrated by the preparation of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brush surfaces on smooth silicon and quartz substrates. With the custom-synthesized inert diluent whose chemical structure, except end-functionality, is the same as that of the reactive initiator, smooth and chemically homogeneous mixed monolayers of initiators and inert diluents are immobilized on a solid surface by LB deposition, allowing the further variation of the grafting density of PNIPAM brushes grafted from the initiator monolayers of varied initiator coverage. With the optimized molar ratio of deactivator, Cu(II) in the Cu(I)-ligand catalyst complex, the brush thickness of PNIPAM brushes at varied grafting density is controlled to grow nearly linearly with reaction time while smoothness and chemical homogeneity of PNIPAM brushes are achieved. For the demonstrated PNIPAM brush surfaces, the thermoresponsive characteristics of PNIPAM brushes are also verified. This combined LB-ATRP method can be applied to graft a variety of polymer brushes, including polyelectrolytes and block copolymers, from different solid substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available