4.2 Article

Preparation, Characterization, Thermal, and Flame-Retardant Properties of Green Silicon-Containing Epoxy/Functionalized Graphene Nanosheets Composites

Journal

JOURNAL OF NANOMATERIALS
Volume 2013, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2013/747963

Keywords

-

Funding

  1. National Science Council, Taiwan [NSC NSC-101-2628-E-241-002]

Ask authors/readers for more resources

In this investigation, silane was grafted onto the surface of graphene nanosheets (GNSs) through free radical reactions, to form Si-O-Et functional groups that can undergo the sol-gel reaction. To improve the compatibility between the polymer matrix and the fillers, epoxy monomer was modified using a silane coupling agent; then, the functionalized GNSs were added to the modified epoxy to improve the thermal stability and strengthen the flame-retardant character of the composites. High-resolution X-ray photoelectron spectrometry reveals that when the double bonds in VTES are grafted to the surfaces of GNSs. Solid-state 29Si nuclear magnetic resonance presents that the distribution of the signal associated with the T-3 structure is wide and significant, indicating that the functionalization reaction of the silicone in the modified epoxy and VTES-GNSs increases the network-like character of the structures. Thermal gravimetric analysis, the integral procedure decomposition temperature, and limiting oxygen index demonstrate that the GNSs composites that contained silicon had a higher thermal stability and stronger flame-retardant character than pure epoxy. The dynamic storage modulus of all of the m-GNSs containing composites was significantly higher than that of the control epoxy, and the modulus of the composites increased with the concentration of m-GNSs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available