4.7 Article

The Transition State of Coupled Folding and Binding for a Flexible β-Finger

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 417, Issue 3, Pages 253-261

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2012.01.042

Keywords

intrinsically disordered proteins; PDZ domain; binding kinetics; phi binding; flexible proteins

Funding

  1. Swedish Research Council [2009-5659]
  2. Human Frontiers Young Investigator Science Program

Ask authors/readers for more resources

Flexible and fully disordered protein regions that fold upon binding mediate numerous protein protein interactions. However, little is known about their mechanism of interaction. One such coupled folding and binding occurs when a flexible region of neuronal nitric oxide synthase adopts a beta-finger structure upon binding to its protein ligand, a PDZ [PSD-95 (postsynaptic density protein-95)/Discs large/ZO-1] domain from PSD-95. We have analyzed this binding reaction by protein engineering combined with kinetic experiments. Mutational destabilization of the beta-finger changed mainly the dissociation rate constant of the proteins and, to a lesser extent, the association rate constant. Thus, mutation affected late events in the coupled folding and binding reaction. Our results therefore suggest that the native binding interactions of the beta-finger are not present in the rate-limiting transition state for binding but form on the downhill side in a cooperative manner. However, by mutation, we could destabilize the beta-finger further and change the rate-limiting step such that an initial conformational change becomes rate limiting. This switch in rate-limiting step shows that multistep binding mechanisms are likely to be found among flexible and intrinsically disordered regions of proteins. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemistry & Molecular Biology

Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers

Ankita Chadda, Alexander G. Kozlov, Binh Nguyen, Timothy M. Lohman, Eric A. Galburt

Summary: In this study, it was found that the DNA damage response in Mycobacterium tuberculosis differs from well-studied model bacteria. The DNA repair helicase UvrD1 in Mtb is activated through a redox-dependent process and is closely associated with the homo-dimeric Ku protein. Additionally, Ku protein is shown to stimulate the helicase activity of UvrD1.

JOURNAL OF MOLECULAR BIOLOGY (2024)